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Reservoir-engineered entanglement in a hybrid modulated three-mode optomechanical system
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We propose an effective approach for generating highly pure and strong cavity-mechanical entanglement
(or optical-microwave entanglement) in a hybrid modulated three-mode optomechanical system. By applying
two-tone driving to the cavity and modulating the coupling strength between two mechanical oscillators (or
between a mechanical oscillator and a transmission line resonator), we obtain an effective Hamiltonian where an
intermediate mechanical mode acting as an engineered reservoir cools the Bogoliubov modes of two target system
modes via beam-splitter-like interactions. In this way, the two target modes are driven to two-mode squeezed
states in the stationary limit. In particular, we discuss the effects of cavity-driving detuning on the entanglement
and the purity. It is found that the cavity-driving detuning plays a critical role in the goal of acquiring highly pure
and strongly entangled steady states.
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I. INTRODUCTION

Theoretical explorations of a quantum optomechanical
system began in the 1990s, including several aspects such as the
squeezing of light [1,2], quantum nondemolition detection of
the light intensity [3,4], preparation of nonclassical states [5–
7], and so on. Ever since the optical feedback cooling scheme
based on the radiation-pressure force was first experimentally
demonstrated in 1999 [8], cavity optomechanics has attracted
much interest, and fruitful progress has been made. Apart from
its potential applications in building highly sensitive sensors
and in testing macroscopic quantum mechanics [9], cavity
optomechanics can also serve as a light-matter interface to
convert information among different systems such as atoms or
atomic ensembles [10,11], Bose-Einstein condensates [12,13],
superconducting solid state qubits [14], etc.

To date, a variety of experimental optomechanical setups
have been reported, e.g., whispering gallery microdisks [15,16]
and microspheres [17,18], membranes [19] or nanorods [20]
inside Fabry-Pérot cavities, a nanomechanical beam inside
a superconducting transmission line microwave cavity [21],
etc. Notably, the hybrid optomechanical system consisting
of different physical components possesses the distinct ad-
vantages of each component, which may be beneficial for
quantum-information processing (QIP). As experimentally
demonstrated by Lee [22] and Winger [23], one can ma-
nipulate a mechanical nanoresonator via both the opto- and
electromechanical interactions, which may provide a platform
to entangle microwave and optical fields [24].
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In this paper, we propose an effective approach for gen-
erating strong steady-state optomechanical entanglement (or
optical-microwave entanglement), which is of great impor-
tance for both fundamental physics and applications in QIP. For
a simple optomechanical system consisting of a laser-driven
optical cavity and a vibrating end mirror, the entanglement
between the cavity field and the mechanical resonator can be
induced by the radiation pressure. However, the amount of
created entanglement is largely limited due to environmental
noises and the stability constraints of systems [25]. To enhance
the entanglement strength, a feasible way is to apply a suitable
time modulation to the driving laser [26,27]. The method is
also effective in three-mode [28–30] or four-mode [31,32]
optomechanical systems. Another promising approach for
creating strong entanglement or squeezing is to induce an
effective engineered reservoir by pumping the optomechanical
systems with proper blue and red detuned lasers [31–40],
which is highly attractive from an experimental point of
view. As far as we know, previous studies mostly focused
on enhancing entanglement between two cavity fields [33,34]
or two mechanical oscillators [30–32,35–38]. Here, inspired
by the approach in Ref. [36], which has been experimentally
demonstrated recently [41], we propose to use both time
modulation and reservoir engineering techniques to generate
highly pure optomechanical or optical-microwave entangle-
ment that goes far beyond the entanglement limit based on
coherent parametric coupling (i.e., ln2) [26,42,43]. In our
hybrid three-mode optomechanical system, the intermediate
mechanical mode acting as a cooling reservoir and the sum
mode of the Bogoliubov modes of the other two system
modes are coupled via the beam-splitter-like interaction. The
sum mode in turn is coupled to the difference mode of the
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FIG. 1. Schematic representation of the system. An optical cavity
mode a driven by a two-tone laser EL(t) is coupled to an intermediate
mechanical mode b1 with single-photon optomechanical coupling
strength g1. b1 is in turn coupled, with a time-dependent coupling
strength g2(t), to (a) another mechanical oscillator, or alternatively
(b) a transmission line resonator b2.

Bogoliubov modes. The swap interactions allow both the sum
and the difference modes to be cooled via the dissipative
dynamics of the intermediate mechanical mode, which is quite
different from Refs. [33,34]. In Refs. [33,34], only one of
the two Bogoliubov modes of the target modes is cooled
while the other Bogoliubov mode is a dark mode that is not
coupled to the engineered bath and thus cannot be cooled.
Accordingly, the obtained steady states are two-mode squeezed
thermal states. i.e., mixed states. On the contrary, our proposal
allows the engineered bath to cool both Bogoliubov modes
simultaneously. In this way, we are able to obtain a highly pure
and strongly entangled steady state that is vital in the standard
continuous-variable teleportation protocol [44,45]. Moreover,
unlike the proposal in Ref. [36], which mainly focuses on
the generation of steady-state mechanical-mechanical entan-
glement in the adiabatic limit, we show that steady optome-
chanical entanglement (or optical-microwave entanglement)
can be maximized by choosing the proper ratio of the effective
optomechanical couplings. We also discuss the critical role of
the effective Bogoliubov-mode coupling (i.e., the frequency
detuning between the cavity and the pumping) on the steady-
state entanglement and purity, which is not considered in
Ref. [36].

II. THE MODEL

As shown in Fig. 1, a hybrid modulated three-mode op-
tomechanical system is composed of an optical cavity mode a

and two mechanical oscillators b1 and b2 [see Fig. 1(a)]; or a
cavity mode a, a mechanical oscillator b1, and a transmission
line resonator b2 [see Fig. 1(b)]. g1 is the single-photon
optomechanical coupling strength between the cavity mode
a with frequency wc and the intermediate mechanical mode
b1 with frequency w1. The cavity is driven by a two-tone
laser EL(t). g2(t) is the time-dependent coupling between the
intermediate mechanical mode b1 and the second mechanical
resonator (or the transmission line resonator) b2 with frequency
w2. Here, the controllable mechanical-mechanical coupling
g2(t) in Fig. 1(a) can be realized by using piezoelectrically
induced parametric mode mixing [46] or by modulating
the Coulomb interactions between the mechanical oscilla-
tors [40,47–50], while the mechanical-microwave coupling
g2(t) in Fig. 1(b) may be achieved via the mechanical
displacement-dependent capacitance Cx of the microwave
cavity.

The system Hamiltonian reads (set h̄ = 1)

H = wca
†a + w1b

†
1b1 + w2b

†
2b2 + g1(b1 + b

†
1)a†a

+ g2(t)(b1 + b
†
1)(b2 + b

†
2) + Hdr, (1)

where

g2(t) = 2
[
gA

2 cos(w1 + w2 + wc − wd )t

+ gB
2 cos(w1 − w2 − wc + wd )t

]
, (2)

and Hdr is the Hamiltonian of the two-tone driving with
frequencies wd ± w1,

Hdr = (ε∗
+eiw1t + ε∗

−e−iw1t )eiwd ta + H.c. (3)

Moving into a rotating frame by performing the unitary
transformation U = exp{−i[wda

†a + w1b
†
1b1 + (w2 + wc −

wd )b†2b2]t}, we obtain

HR = U †HU − iU †∂U/∂t

= δ(a†a − b
†
2b2) + g1(b1e

−iw1t + b
†
1e

iw1t )a†a

+ g2(t)(b1e
−iw1t + b

†
1e

iw1t )[b2e
−i(w2+δ)t

+ b
†
2e

i(w2+δ)t ] + [(ε∗
+eiw1t + ε∗

−e−iw1t )a + H.c.], (4)

where δ = wc − wd is the cavity-driving frequency detuning.
Applying the displacement transformation a = ā+e−iw1t +
ā−eiw1t + d to Eq. (4) in the strong driving case, we obtain
the linearized Hamiltonian by discarding all nonlinear terms
of the quantum fluctuations provided that the single-photon
optomechanical coupling g1 is small,

Hlin = H0 + H1 + H2, (5)

with

H0 = δ(d†d − b
†
2b2), (6a)

H1 = g1[(ā+b1d + ā−b1d
†) + (ā+b1d

†

+ ā−b1d)e−2iw1t ] + H.c., (6b)

H2 = gA
2 {b1b2[1 + e−2i(w1+w2+δ)t ]

+ b1b
†
2[e2i(w2+δ)t + e−2iw1t ]}

+ gB
2 {b1b2[e−2i(w2+δ)t + e−2iw1t ]

+ b1b
†
2[1 + e−2i(w1−w2−δ)t ]} + H.c., (6c)

where the classical cavity field amplitudes ā± are assumed to
be real,

ā± = iε±/(−κ/2 − iδ ± iw1), (7)

and κ is the cavity decay rate. If we set g1ā+ = gA
2 = G+,

g1ā− = gB
2 = G−, under the conditions w1,w2,|w1 − w2 −

δ| � G±, all the nonresonant terms in the linearized Hamilto-
nian Hlin can be effectively neglected under the rotating-wave
approximation,

HRWA = δ(β†
1β1 − β

†
2β2) + [G(β†

1 + β
†
2)b1 + H.c.], (8)
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where the Bogoliubov modes β1 and β2 are unitary transfor-
mations of d and b2, respectively,

β1 = s(r)ds†(r) = d cosh r + b
†
2 sinh r, (9a)

β2 = s(r)b2s
†(r) = b2 cosh r + d† sinh r. (9b)

Here, G =
√

G2− − G2+ (we have assumed G+ < G− to

ensure stability) and s(r) = exp[r(db2 − d†b†2)] is the two-
mode squeezing operator with the squeezing parameter r =
tanh−1(G+/G−). It is clear from Eq. (9) that the joint ground
state of β1 and β2 is the two-mode squeezed vacuum state of
the cavity mode d and the mechanical mode b2. Introducing
the sum mode and the difference mode of Bogoliubov modes

βsum = (β1 + β2)/
√

2, βdiff = (β1 − β2)/
√

2, (10)
then the Hamiltonian in Eq. (8) becomes

HRWA = δβ†
sumβdiff +

√
2Gβ†

sumb1 + H.c., (11)
which is similar to that of Ref. [36]. Obviously, the sum mode
βsum is coupled to both the intermediate mechanical mode b1

and the difference mode βdiff each via a beam-splitter-like
interaction. Through the intermediate mechanical mode b1

acting as an engineered reservoir, both the sum and difference
modes, i.e., the two Bogoliubov modes β1 and β2, can be cooled
to near ground state, generating two-mode squeezing between
the cavity mode d and the mechanical mode b2.

III. ENTANGLEMENT AND PURITY

The quantum Langevin equations governing the dynamics
of the linearized system can be written as

ḋ = i[Hlin,d] − κ

2
d + √

κdin, (12a)

ḃj = i[Hlin,bj ] − γj

2
bj + √

γjbj,in, (12b)

where γj (j = 1,2) is the damping rate for the j th mechanical
oscillator, and din and bj,in are independent zero mean vac-
uum input noise operators obeying the following correlation
functions:

〈din(t)d†
in(t ′)〉 = (n̄d + 1)δ(t − t ′), (13a)

〈d†
in(t)din(t ′)〉 = n̄dδ(t − t ′), (13b)

〈bj,in(t)b†j,in(t ′)〉 = (n̄j + 1)δ(t − t ′), (13c)

〈b†j,in(t)bj,in(t ′)〉 = n̄j δ(t − t ′) (13d)

with n̄d and n̄j being equilibrium mean thermal occupancies
of the cavity and the j th mechanical baths, respectively.

Introducing the position and momentum quadratures for the
bosonic modes and their input noises

Qo = (o + o†)/
√

2, Po = (o − o†)/(i
√

2), (14)

with o ∈ {d,b1,b2,din,b1,in,b2,in} and the vectors of all quadra-
tures

R = [Qd,Pd,Qb1 ,Pb1 ,Qb2 ,Pb2 ]T , (15a)

N = [
√

κQdin ,
√

κPdin ,
√

γ1Qb1,in ,

×√
γ1Pb1,in ,

√
γ2Qb2,in ,

√
γ2Pb2,in ]T , (15b)

the linearized quantum Langevin equations (12) can be written
in a compact form,

Ṙ = M(t)R + N. (16)

Here, M(t) is a 6 × 6 time-dependent matrix

M(t) =

⎛
⎜⎜⎜⎜⎜⎝

−κ/2 δ Im(G1 + G2) Re(G2 − G1) 0 0
−δ −κ/2 −Re(G2 + G1) Im(G2 − G1) 0 0

Im(G1 − G2) Re(G2 − G1) −γ1/2 0 Im(G3 + G4) Re(G4 − G3)
−Re(G2 + G1) −Im(G1 + G2) 0 −γ1/2 −Re(G3 + G4) Im(G4 − G3)

0 0 Im(G3 − G4) Re(G4 − G3) −γ2/2 −δ

0 0 −Re(G3 + G4) −Im(G3 + G4) δ −γ2/2

⎞
⎟⎟⎟⎟⎟⎠

, (17)

where Re and Im, respectively, denote the real and imaginary
parts. G1–G4 are given by

G1 = G+ + G−e2iw1t , (18a)

G2 = G− + G+e−2iw1t , (18b)

G3 = G+[1 + e2i(w1+w2+δ)t ]

+G−[e2i(w2+δ)t + e2iw1t ], (18c)

G4 = G−[1 + e2i(w1−w2−δ)t ]

+G+[e−2i(w2+δ)t + e2iw1t ]. (18d)

Since the system is linearized, it remains Gaussian starting
from an initial Gaussian state whose information-related prop-
erties can be fully described by the covariance matrix [51–53].
For our three-mode bosonic system, the covariance matrix σ

is a 6 × 6 matrix with components defined as

σj,k = 〈RjRk + RkRj 〉/2, (19)

where Rk is the kth component of the vector of quadratures
R in Eq. (15). From Eqs. (13), (15), and (16), we can derive
a linear differential equation of the covariance matrix that is
equivalent to the quantum Langevin equation (16) when only
Gaussian states are relevant [26],

σ̇ = M(t)σ + σM(t)T + D. (20)

Here, D is a diffusion matrix whose components are associated
with the noise correlation functions [see Eq. (13)]

Dj,kδ(t − t ′) = 〈Nj (t)Nk(t ′) + Nk(t ′)Nj (t)〉/2. (21)
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D is found to be diagonal,

D = diag{κ(2n̄d + 1)/2,κ(2n̄d + 1)/2,γ1(2n̄1 + 1)/2,

γ1(2n̄1 + 1)/2,γ2(2n̄2 + 1)/2,γ2(2n̄2 + 1)/2}. (22)

The general stability conditions of the linear differential
equation [Eq. (16) or equally Eq. (20)] are determined by
the corresponding homogeneous equation Ṙ = M(t)R, which
is fully characterized by the time-periodic coefficient matrix
M(t). Suppose that the period of the coefficient matrix M(t) is
T > 0, i.e., M(t) = M(t + T ). Let 	(t) be a principal matrix
solution of the homogeneous equation. The eigenvalues λj

(j = 1,2, . . . ,6) of � = 	−1(0)	(T ) are called the character-
istic multipliers or Floquet multipliers [54], where 	(T ) can
be obtained by numerical integration with the initial condition
	(0). The solutions of Eqs. (16) and (20) are stable if all
Floquet multipliers satisfy |λj | < 1. For the special case of
a time-independent coefficient matrix M = M(t = 0) under
the rotating-wave approximation, i.e., omitting all nonresonant
terms in Eq. (5) [all time-dependent terms in Eq. (17)],
the stability requirements can be readily inferred from the
eigenvalues of the time-independent coefficient matrix M ,
i.e., all eigenvalues of M having negative real parts. The
stability conditions will be carefully checked in all simulations
throughout this paper.

For two-mode Gaussian states of the cavity mode d and
the mechanical resonator b2 of interest here, it is convenient
to use the logarithmic negativity EN as a measurement of the
entanglement [55,56]. EN can be computed from the reduced
4 × 4 covariance matrix σr for d and b2 whose components
are just the terms associated with d and b2 only in the full
covariance matrix σ . If we write σr in the form

σr =
(

V1 Vc

V T
c V2

)
, (23)

where V1, V2, and Vc are 2 × 2 subblock matrices of σr , the
logarithmic negativity EN is then given by

EN = max[0,− ln(2η)], (24)

with

η = 2−1/2{ − [2 − 4 det σr ]1/2}1/2, (25a)

 = det V1 + det V2 − 2 det Vc. (25b)

The purity of a two-mode Gaussian state described by a
covariance matrix σr is simply given by

μ = 1/(4
√

det σr ). (26)

We next study the steady-state entanglement [σ̇ (t) = 0
in the stationary limit t � 1/κ,γ1,2 if the system is stable]
with the time-independent Hamiltonian in Eqs. (8) and (11)
under the rotating-wave approximation [by dropping all time-
dependent terms in Eq. (17)]. Figure 2 displays the steady-state
entanglement EN of the cavity mode d and the mechanical
mode b2 as functions of the coupling asymmetry G+/G− for
different δ with zero bath occupations for all modes, where the
downward triangle denotes the optimal value of each curve.
Apparently, EN is a nonmonotonic function of G+/G− in any
given set of parameters and takes a maximum for a specific
G+/G−. The phenomenon is similar to that in Refs. [33,36,40],
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FIG. 2. Stationary cavity-mechanical entanglement EN vs the
ratio of the effective couplings G+/G− for different values of δ.
(a) δ = 10γ1, (b) δ = 5γ1, and (c) δ = γ1. The other parameters are
G− = 2.5γ1, κ = γ2, and n̄1 = n̄2 = n̄d = 0.

and it can be explained as follows. The relation tanh r =
G+/G− indicates that the increase of the ratio G+/G− can
raise the squeezing parameter r , which is beneficial for en-
hancing the entanglement. But, from another point of view, the
increase in G+/G− (with G− fixed) accompanies the decline

of effective coupling G =
√

G2− − G2+ between the sum mode
βsum and the mechanical mode b1, which is harmful for the
cooling effect and thus reduces the amount of entanglement.
The best value is obtained when the two competing effects
balance. In addition, we find that the smaller the ratio γ2/γ1, the
lager the maximal entanglement EN and the optimal G+/G−
in each figure. Since the entanglement generation is largely

042314-4



RESERVOIR-ENGINEERED ENTANGLEMENT IN A HYBRID … PHYSICAL REVIEW A 97, 042314 (2018)

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
(a)

Pu
rit

y 
μ

G+/G-

 γ2=γ1/20

 γ2=γ1/200

 γ2=γ1/2000

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
(b)

 γ2=γ1/20

 γ2=γ1/200

 γ2=γ1/2000

Pu
rit

y 
μ 

G+/G-

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0
(c)

 γ2=γ1/20

 γ2=γ1/200

 γ2=γ1/2000

Pu
rit

y 
μ

G+/G-

FIG. 3. Steady-state purity of the cavity mode d and the mechan-
ical mode b2 against the ratio of the effective couplings G+/G− for
different values of δ. (a) δ = 10γ1, (b) δ = 5γ1, and (c) δ = γ1. All
other parameters are the same as those in Fig. 2.

based on cooling the Bogoliubov modes via the dissipative
dynamics of the mechanical mode b1, one would expect that a
strong damping rate γ1 of b1 and simultaneously weak damping
rates γ2 of b2 and κ of d should increase the peak entanglement
EN (corresponding to bigger G+/G−). Comparing Figs. 2(a),
2(b) and 2(c) with different values of δ, one can find that
the achievable entanglement is also dependent on δ, which
is the effective coupling between the sum mode βsum and
the difference mode βdiff and induces the cooling process
of βdiff.

Figure 3 shows the purity as functions of the coupling
asymmetry G+/G−. Clearly, we can observe that the purity is
inversely correlated to G+/G−. If γ2 is small enough compared
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FIG. 4. Stationary cavity-mechanical entanglement EN vs the
effective coupling δ. The sets of parameters corresponding
to different lines are γ2 = γ1/20,G+/G− = 0.604 (red solid
line); γ2 = γ1/200,G+/G− = 0.786 (blue dashed line); and γ2 =
γ1/2000,G+/G− = 0.918 (olive dotted line). The other parameters
are G− = 2.5γ1, κ = γ2, and n̄1 = n̄2 = n̄d = 0.

to γ1, one can keep the high purity (≈ 1) of the steady states
over a wide range of G+/G−. However, in order to enhance
the entanglement, one needs a larger squeezing parameter
r = tanh−1(G+/G−) (i.e., larger G+/G−) which, on the other

hand, weakens the effective coupling G =
√

G2− − G2+ and
hence cripples the cooling process of Bogoliubov modes
toward a pure ground state via the dissipation of b1. For the
sake of gaining a large amount of entanglement while retaining
the relatively high purity of the entangled states, we can select
proper detuning δ as shown in Figs. 4 and 5, where the down-
ward triangles indicate the optimal values of the corresponding
curves. Note that the chosen coupling asymmetry G+/G−
for each γ2 is the value where EN takes the maximum in
Fig. 2(a). Remarkably, one can find specific δ where both
the entanglement and the purity take the local maximum. For
example, when γ2 = γ1/2000, G+/G− = 0.918, and δ ≈ γ1,
we have EN ≈ 3.2 and μ ≈ 0.98. In other words, our scheme
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FIG. 5. Steady-state purity of the cavity mode d and the mechan-
ical mode b2 vs the effective coupling δ. All parameters are the same
as those in Fig. 4.
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FIG. 6. The time evolution of the entanglement [(a) and (b)] and
purity [(c) and (d)] of the quantum states of the cavity mode d and
mechanical mode b2 with [(b) and (d)] and without [(a) and (c)] the
nonresonant terms. The parameters are G− = 2.5γ1, G+ = 0.918G−,
κ = γ2 = γ1/2000, δ = γ1, n̄2 = n̄d , ω1 = 10γ1, and ω2 = 100γ1.

allows the generation of highly pure and strongly entangled
optomechanical states.

To find the optimal δopt, one can recall the Hamiltonian
under the rotating-wave approximation in Eq. (11). The sum
mode βsum is simultaneously coupled to the difference mode
βdiff and the mechanical mode b1 with beam-splitter-like
coupling strengths δ and

√
2G, respectively. The coupling

between βsum and b1 induces the cooling process of βsum, while
the coupling between βsum and βdiff is responsible for cooling
the βdiff mode. For a given (fixed) set of parameters G+,G−,

on the one hand, if δ is too small (relative to G =
√

G2− − G2+),
βdiff cannot be effectively cooled by βsum. For example, when
δ approaches 0, only the βsum mode can be cooled by b1.
On the other hand, if δ is too large, i.e., βdiff and βsum are
strongly coupled, the quanta are confined and swap rapidly
between them. Hence, βsum cannot be effectively cooled by
b1 in this case. For different sets of parameters G+ and G−,
one would expect some moderate values of δ that correspond to
maximum entanglement and purity. In fact, we have found that
the optimal δopt is approximately equal to G from Figs. 4 and
5, where δopt ≈ G ≈ 2γ1 for red solid lines, δopt ≈ G ≈ 1.5γ1

for blue dashed lines, and δopt ≈ G ≈ 0.99γ1 for olive dotted
lines.

So far all of our discussions have been restricted to the
rotating-wave approximation. To study the effects of nonres-
onant terms of the linearized Hamiltonian in Eq. (5), we plot
in Fig. 6 the time evolution of the entanglement and purity
with [Figs. 6(b) and 6(d)] and without [Figs. 6(a) and 6(c)]
the nonresonant terms for some bath occupancies. We study
the system dynamics by numerically solving the differential
equation of the covariance matrix in Eq. (20) with the initial
states of all modes assumed to be in thermal equilibrium with
their local baths. When performing the numerical simulations,
the effects of nonresonant terms are included by using the full
time-dependent coefficient matrix M(t) in Eq. (17) containing
all time-dependent terms. We find that the nonresonant terms
only induce small oscillations and do not significantly reduce
the amount of steady-state entanglement and purity in the long-
time limit, suggesting that the rotating-wave approximation is
indeed valid.

IV. CONCLUSIONS

In summary, we have proposed an effective approach to
generate pure and strong steady-state optomechanical en-
tanglement (or optical-microwave entanglement) in a hybrid
modulated three-mode optomechanical system. By applying a
proper two-tone driving of the cavity and modulating coupling
strength between two mechanical oscillators (or between a
mechanical oscillator and a superconducting transmission line
resonator), one can prepare the two target modes of the system
in an entangled steady state. The proposal uses an interme-
diate mechanical mode acting as an engineered reservoir to
effectively cool both Bogoliubov modes of the target modes to
near their ground state via the beam-splitter-like interactions.
Our approach allows the generation of a highly pure and
strongly entangled steady state by properly choosing not only
the ratio of the effective optomechanical couplings but also the
cavity-pump detuning.
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