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Single-photon nonlinearities in a strongly driven optomechanical system with quadratic coupling
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Optical nonlinearities at the single-photon level are explored in a quadratically coupled optomechanical system,
where the cavity frequency is coupled to the square of the mechanical displacement. The effective nonlinear
interaction between photons and phonons is enhanced by a strong driving field, which allows one to implement
the single-photon nonlinearities even if the single-photon coupling strength g0 is much lower than the cavity decay
rate κ . The photon statistical properties are discussed by calculating the second-order correlation function both
analytically and numerically. The results show that the single-photon nonlinearities are robust against mechanical
thermal noise in the strong-coupling and sideband-resolved regime, and photon blockade and photon-induced
tunneling can be realized with experimentally accessible parameters.
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I. INTRODUCTION

Realization of single-photon nonlinearities is a central topic
in quantum optics. In the past few decades, strong optical
nonlinearities at the single-photon level have been intensively
studied in cavity QED [1,2], quantum dots [3], and Rydberg
atomic systems [4,5], with practical relevance for quantum
computation and quantum information. Recently, a lot of
attention has been paid to optomechanical systems [6,7],
where light is coupled to mechanical motion via radiation
pressure. The optomechanical interaction between photons and
phonons is nonlinear, which has been theoretically exploited
to generate nonclassical state [8,9], to realize strong photon
correlations [10–22], nondemolition measurement [23–25],
etc. However, the nonlinear quantum optomechanics requires
the single-photon coupling strength to exceed the cavity decay
rate, namely, g0 > κ . In spite of recent significant laboratory
advances, this regime still presents daunting experimental
challenges.

The simplest way to enhance the optomechanical coupling
is to coherently drive the cavity, leading the coupling strength
to gain a factor

√
n, where n is the average intracavity

photon number. This approach has led to a number of
interesting phenomena, for example, ground-state cooling
[26–32], normal-mode splitting [33,34], optomechanically
induced transparency [35–37], mechanically mediated state
transfer [38–43], and the realization of squeezed light [44–46].
However, this enhancement comes at the cost of losing the
intrinsic nonlinearity of the optomechanical coupling, namely,
the interaction between photons and phonons is effectively
linearized.

Recently, the enhancement of g0/κ has been theoretically
studied by using the Josephson effect in superconduction
circuits [47], collective interactions in optomechanical ar-
rays [48,49], and diamagnetic and demagnetizing effects in
superconducting quantum magnetomechanics [50]. Remark-

*xmlin@fjnu.edu.cn

ably, strong optical nonlinearities can also be realized in the
weak-coupling case. For example, strong Kerr nonlinearities
are induced by quantum criticality in a hybrid electro-
optomechanical system [51], and single-photon nonlinearities
are obtained by driving near optomechanical instability in a
two-mode system [52] and by enhanced nonlinear coupling
between the squeezed cavity mode and the mechanical
mode [22].

Here, we study single-photon nonlinearities in a quadrati-
cally coupled optomechanical system [53–58]. Optomechani-
cal quadratic coupling, where the cavity frequency is coupled
to the square of the mechanical displacement, enables nonlin-
ear interactions between photons and phonons [59–62] even
when the optomechanical system is strongly driven. By driving
the cavity on red two-phonon resonance, light-enhanced
nonlinear coupling between photons and phonons results in
an anharmonic energy-level diagram. Analogously to the
Jaynes-Cummings ladder of the atom-cavity system [2,63,64],
the anharmonic energy level provides a crucial feature to
realize single-photon nonlinearities. To characterize photon
statistical properties of the quadratically coupled system, the
equal-time second-order correlation function is discussed both
analytically and numerically. We find that photon blockade
and photon-induced tunneling can be observed under the
strong-coupling condition, i.e., the effective coupling strength
g exceeds the cavity decay rate κ . This result is different from a
previous study [58] where the stringent single-photon strong-
coupling condition (g0 > κ) must be satisfied to realize photon
blockade. Fortunately, in the strong-driving case, the effective
coupling strength g = g0α can be enhanced and tuned by
adjusting the amplitude of the driving field, which will reduce
the experimental difficulty and extend its utility. Combined
with the recent large enhancement of g0 in the photon crystal
optomechanical cavity [65], the strong-coupling condition
g > κ can be achieved in state-of-the-art experiments.

This paper is organized as follows. In Sec. II, we describe
the theoretical model of a strongly driven optomechanical
system with quadratic coupling and show that the nonlinear
interaction between photons and phonons can be employed
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to realize strong optical nonlinearities. Section III presents
approximately analytical solutions and numerical results of the
second-order correlation function in the few-photon subspace.
Finally, we provide a brief outlook on the experimental
feasibility of a strong-coupling and sideband-resolved regime
and summarize the results in Sec. IV.

II. THEORETICAL MODEL

The interaction between light and mechanics in a cavity
optomechanical system is often termed dispersive, where
the frequency of the cavity is dependent on the position of
the mechanics oscillator, ω(x) = ωc + ω′x + ω′′x2/2 + · · · .
Here, ωc is the bare resonance frequency of the cavity, x =
xZPF(b + b†) denotes the position of the mechanical oscillator
with the zero-point fluctuation amplitude xZPF, and b expresses
the annihilation operator of the mechanical mode. Consider
a membrane-in-the-middle configuration [54,55], in which a
thin dielectric membrane is placed inside a Fabry-Perot cavity,
as shown in Fig. 1(a). When the membrane is located in the
node (or antinode) of the cavity field, the first derivative
of ω(x) vanishes, i.e., ω′ = 0, so that ω′′/2 becomes the

ω

ω

ω

ω

ε

Drive  

Probe 

Cavity 

Membrane 

(a)

(b)

L

c

p

FIG. 1. (a) Schematic of a strongly driven optomechanical system
with quadratic coupling. (b) Anharmonic level diagram for the
relevant zero-photon, one-photon, and two-photon states. States are
labeled |nm〉, where n (m) denotes the photon (phonon) number. The
effective coupling g splits the degeneracy between state |nm〉 and
state |n − 1,m + 2〉. Dotted green arrows describe the one-photon
transition; solid red arrows, the two-photon transition.

dominant term for the optomechanical coupling. Thus we
have ω(x)a†a � (ωc + ω′′x2/2)a†a. After switching to the
rotating picture at driving frequency ωL, the Hamiltonian of
the quadratically coupled system reads

H1 = [δc + g0(b + b†)2](a†a − 〈a†a〉) + ωmb†b + Hdr, (1)

where δc = ωc − ωL is the detuning between the cavity and
the driving fields, ωm denotes the mechanical frequency,
and g0 = 1

2ω′′x2
ZPF represents the single-photon quadratic

coupling strength. Following previous studies [26,59], we
have subtracted the steady-state average photon number 〈a†a〉,
which renormalizes the mechanical frequency. Hdr = �(a† +
a) describes the driving term in the rotating picture, where the
amplitude � is related to the input laser power Pin and cavity
decay rate κ by |�| = √

Pinκ/�ωL.
For a sufficiently strong driving field, the cavity and

mechanical modes can be split into an average coherent
amplitude and a fluctuation term, i.e., a → α + a and b →
β + b. Following the standard linearization procedure, one
has the average coherent amplitudes

α̇ = −
(

iδc + κ

2

)
α − ig0α(β + β∗)2 − i�, (2a)

β̇ = −
(

iωm + γ

2

)
β − i2g0(|α|2 − 〈a†a〉)(β + β∗), (2b)

where γ is the mechanical decay rate. In the steady-state
case, one gains α = �/(−δc + iκ/2) and β = 0, where the
amplitude α can be chosen real without loss of generality.

Then the driven-displaced Hamiltonian becomes

H2 = δca
†a + ωmb†b + g(a† + a)(b + b†)2

+ g0a
†a(b + b†)2 (3)

with the effective coupling strength g = g0α. For the param-
eters [55] Pin = 5 μW, λ = 1064 nm, ωm = 106 Hz, and
κ = 105 Hz, one has α ∼ 104. Since g0 
 g, the second-order
term g0a

†a(b + b†)2 can be neglected. This is known as
the linearization approximation. Under the conditions δc =
2ωm and ωm � g, the rapidly oscillating terms with high
frequencies ±(δc + 2ωm) and ±δc can be safely neglected
under the rotating-wave approximation. Consequently, the
effective Hamiltonian of the system can be written as

Heff = δca
†a + ωmb†b + g(a†b2 + ab†

2
). (4)

The validity of the effective Hamiltonian Heff is numerically
checked in the next section. Note that the nonlinear coupling
g = g0α between the cavity and the mechanical modes can be
enhanced and tuned by adjusting the amplitude of the driving
field.

The nonlinear interaction in Heff describes the process
that the creation (annihilation) of a photon is accompanied
by the annihilation (creation) of two phonons, which leads
to a resonant interaction between state |n,m〉 and state
|n − 1,m + 2〉, where n (m) represents the occupation number
of the cavity (mechanical) mode. Because of its dependence on
the photon number n and phonon number m, the corresponding
coupling amplitude g

√
n(m + 1)(m + 2) will give rise to an
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anharmonic level diagram, analogous to the Jaynes-Cummings
ladder of the atom-cavity system.

Assume that only the lower energy levels of the cavity
field and mechanical resonator are occupied, the effective
Hamiltonian Heff can be diagonalized in the few-photon
subspace, resulting in dressed states as shown in Fig. 1(b).
The eigenstates and eigenvalues of the system in the diagonal
bases are denoted |00〉 = |00〉 and 0 in the zero-photon
subspace, |1±〉 = 1√

2
(|10〉 ± |02〉) and ±√

2g in the one-

photon subspace, and |2±〉 = 1
2
√

2
(|20〉 ± 2|12〉 + √

3|04〉),
|20〉 = 1

2 (−√
3|20〉 + |04〉), and ±4g,0 in the two-photon

subspace, respectively.
To exploit the light-enhanced nonlinear quadratic coupling,

a weak field with frequency ωp and amplitude ε is used to probe
the cavity mode [18,22]. In the rotating frame with ωL, the
Hamiltonian of the probe field is Hp = ε(aeiδpt + a†e−iδpt ),
where δp = ωp − ωL. In the rotating frame corresponding
to the unitary operator U = ei(a†a+b†b/2)δpt , the Hamiltonian
Heff + Hp including the probe feld is given by

H̃eff = �d†d + ω̃mb†b + g(a†b2 + ab†
2
) + ε(a + a†), (5)

where � = δc − δp = ωc − ωp describes the detuning be-
tween the cavity mode and the probe field, and ω̃m = ωm −
δp/2 = �/2 satisfies the two-phonon resonant condition in
this new rotating frame.

III. PHOTON BLOCKADE AND PHOTON TUNNELING

To characterize the photon statistical properties of the
cavity field, we study the average intracavity photon number
〈n〉 = 〈a†a〉 and equal-time second-order correlation function
g(2)(0) = 〈a†2a2〉/〈a†a〉2

. The condition g(2)(0) < 1 corre-
sponds to sub-Poisson statistics of the cavity field, which is a
nonclassical effect often referred to as photon antibunching,
and the limit g(2)(0) → 0 indicates complete photon blockade,
in which two photons never occupy the cavity at the same
time.

A. Analytical solutions

Assume that the mechanical mode has been cooled to its
ground state. In the weak-probe regime, only the lower energy
levels of the system are excited, and the general state of the
system in few-photon subspace can be written as

|ψ〉 = C00|00〉 + C10|10〉 + C02|02〉 + C20|20〉
+C12|12〉 + C04|04〉, (6)

where the coefficients Cnm describe the probability amplitudes
of the corresponding states. The average intracavity photon
number can be expressed as

〈n〉 = |C10|2 + |C12|2 + 2|C20|2, (7)

and the equal-time second-order correlation function

g(2)(0) = 2|C20|2
(|C10|2 + |C12|2 + 2|C20|2)2

. (8)

To calculate the average intracavity photon number and the
correlation function, an effective non-Hermitian Hamiltonian

is considered:

H ′
eff = �a†a + ω̃mb†b + g(a†b2 + ab†

2
) + ε(a + a†)

− i
κ

2
a†a − i

γ

2
b†b. (9)

By the Schrödinger equation id|ψ〉/dt = H ′
eff|ψ〉, the proba-

bility amplitudes satisfy the equations of motion

Ċ00 = −iεC10, (10a)

Ċ10 = −κ ′C10 − i
√

2gC02 − iεC00 − i
√

2εC20, (10b)

Ċ02 = −2γ ′C02 − i
√

2gC10 − iεC12, (10c)

Ċ20 = −2κ ′C20 − i2gC12 − i
√

2εC10, (10d)

Ċ12 = −(κ ′ + 2γ ′)C12 − i2gC20 − i2
√

3gC04 − iεC02,

(10e)

Ċ04 = −4γ ′C04 − i2
√

3gC12, (10f)

where κ ′ = κ/2 + i�, γ ′ = γ /2 + iω̃m. The low mechanical
decay rate γ (
 κ) can be neglected for simplicity, leading
to γ ′ ≈ iω̃m = i�/2. If the probe field is sufficiently weak
(ε/κ 
 1), few photons will be excited to the cavity mode. In
the limit ε → 0, the system remains in the ground state |00〉.
Thus C10 and C02 are on the scale of ε, while C20, C12, and
C04 are on the scale of ε2.

By neglecting the higher orders of ε in the weak-probe
limit, the average intracavity photon number is approximately
given by 〈n〉 ≈ |C10|2. By Eq. (10) we obtain

〈n〉 = ε2

κ2/4 + (� − 2g2/�)2 (11)

in the case of steady state. Note that 〈n〉 reaches the maximum
value of 4ε2/κ2 at  = ±√

2g. This is because the resonance
transition frequency of the cavity mode from the ground state
to the one-photon state is shifted by ±√

2g when the cavity
field is coupled to the mechanical mode, as shown in Fig. 1(b).

The second-order correlation function is approximately
expressed as g(2)(0) ≈ 2|C20|2/|C10|4. For the steady-state, we
have

g(2)(0) = [κ2/4 + (�−2g2/�)2][κ2/4 + 4(� − 2g2/�)2]

[κ2/4 + �2][κ2/4 + 4(� − 4g2/�)2]
.

(12)

Suppose that the probe field is tuned to the single-photon
resonance transition frequency of the cavity field, i.e.,
� = ±√

2g, the correlation function becomes g(2)(0) =
1/(1 + 8g2/κ2)(1 + 32g2/κ2). In the strong-coupling regime
of g > κ , we have g(2)(0) < 1, which means that the proba-
bility of exciting the single-photon state is higher than that of
preparing a two-photon state. The single-photon transition is
indicated by dotted green arrows in Fig. 1(b).

In the case of two-photon resonance, � = ±2g, the
correlation function becomes g(2)(0) = 1 + 4g2/κ2. We have
g(2)(0) > 1, which indicates that the cavity tends to be in
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the two-photon state rather than the single-photon state. The
two-photon transition is illustrated by the solid red arrows in
Fig. 1(b).

For detuning � = 0, we obtain strong photon bunch-
ing g(2)(0) � 1. At first sight, the physical origin of this
bunching seems to be the two-photon transition |00〉 → |20〉.
However, the two-photon transition intermediated by two
one-photon states |1±〉 will be suppressed as a result
of destructive interference between two transition paths,
|00〉 → |1−〉 → |20〉 and |00〉 → |1+〉 → |20〉. This can be
understood from the two-photon Rabi frequency �0,20 =∑

k=1± 〈20|H ′
p|k〉〈k|H ′

p|20〉/ω1±, where H
′
p = ε(a + a†) is

the probe field in the rotating frame and ω1± = ±√
2g

are eigenvalues of the system in one-photon subspace. The
two-photon Rabi frequency �0,20 vanishes at zero detuning,
which indicates that the two-photon resonance is annihilated
by interference. In fact, as discussed for the two-mode
optomechanics case [13], the photon bunching at � = 0 is
due to the suppression of the one-photon population. Starting
with the ground state |00〉, the system will be driven into a
dark state, i.e., |dark〉 ∝ g|00〉 − ε|02〉. Hence, the population
in |10〉 is suppressed. State |02〉 in the dark state will transit to
|12〉, which in turn is coupled to |20〉.

B. Numerical results and brief discussion

Next we solve exactly the systemic dynamics after taking
into account practical noises. The master equation of the
density operator ρ for the system is given by

ρ̇ = −i[Heff + Hp,ρ] + κD[a]ρ + γ n̄thD[b]ρ

+ γ (n̄th + 1)D[b†]ρ, (13)

whereD[o]ρ = oρo† − (o†oρ + ρo†o)/2 is the standard dissi-
pator in the Lindblad form and n̄th = 1/[exp(�ωm/kBT ) − 1]
denotes the thermal phonon number at the environmental
temperature T .

To check the validity of the effective Hamiltonian Heff,
the evolution of the correlation function g(2)(0) is plotted in
Fig. 2, where the numerical result obtained using the effective
Hamiltonian Heff (solid red curve) agrees well with the exact
solution corresponding to the full Hamiltonian H1 (dashed
blue curve). Figure 2 also shows that a steady value of the
correlation function g(2)(0) can be obtained at κt ≈ 20, which
indicates that the relaxation time of the system is 200 μs when
κ = 105 Hz.

Figure 3 plots the normalized average intracavity photon
number and second-order correlation function as a function
of �/g. Here the average photon number is normalized
by n0 = 4(ε/κ)2. The analytical results (solid red curves)
are in excellent agreement with the numerical results (blue
circles) based on the master equation, (13). When detuning
� = ±√

2g, Figure 3(a) shows two peaks, which are due to
energy shift of the cavity field in the one-photon subspace,
and Figure 3(b) presents the strong antibunching g(2)(0) 
 1,
which exactly confirms the photon blockade. This effect results
from the anharmonic energy level of the system. In the strong
quadratic coupling regime g > κ , the one-photon transition
|00〉 → |1±〉 can be spectrally resolved, and the subsequent
transition |1±〉 → |20,±〉 is suppressed, leading to photon

FIG. 2. Equal-time second-order correlation function g(2)(0) ver-
sus κt at detuning � = ±√

2g. The solid red curve is the numerical
solution based on master Eq. (13) with g/κ = 1; the dashed blue curve
is the exact numerical result corresponding to the full Hamiltonian H1

replacing the effective Hamiltonian Heff in Eq. (13). Parameters are
chosen as g0/κ = 0.01, ωm/κ = 100, and α = 100 (corresponding
to the driving amplitude �/κ � 6.0 × 104). Other parameters are
n̄th = 0, ε/κ = 0.1, and γ /κ = 0.01.

blockade. The two peaks of g(2)(0) > 1 at � = ±2g shown
in Fig. 3(b) imply that the photon bunching is due to the
two-photon transition |00〉 → |2±〉. The two-photon transition
is often referred to as photon-induced tunneling [63], where a
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FIG. 3. (a) Normalized mean intracavity photon number 〈n〉/n0

with n0 = 4ε2/κ2 and (b) equal-time second-order correlation func-
tion g(2)(0) as a function of �/g at zero temperature. Solid red curves
show approximate analytical results based on Eqs. (11) and (12); blue
circles show numerical solutions of the master equation. Parameters
are taken as g/κ = 4, ε/κ = 0.1, and γ /κ = 0.01.
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FIG. 4. (a) At detuning � = ±√
2g, the second-order correlation

function g(2)(0) as a function of g/κ with ε/κ = 0.1. Inset: g(2)(0) as
a function of ε/κ . (b) Second-order differential correlation function
C(2)(0) versus �/g for different values of ε/κ . Other parameters are
γ /κ = 0.01 and g/κ = 4.

photon presenting into the cavity will increase the probability
of a subsequent photon’s entering it. The bunching effect at
� = 0 results from the suppression of the one-photon state, as
discussed in the previous subsection.

Figure 4(a) displays the correlation function g(2)(0) as a
function of g/κ at the detuning � = ±√

2g. Obviously, g(2)(0)
decreases with increasing g/κ , and g(2)(0) 
 1 appears in
the region g/κ > 1, which implies that the strong-coupling
condition is necessary for generating photon blockade. The
inset describes g(2)(0) for different values of ε/κ , where
the coupling strength g = κ . We find that g(2)(0) 
 1 can
be observed only in the weak-probe limit ε/κ 
 1, and
g(2)(0) increases with increasing ε/κ . The photon antibunching
disappears when the probe amplitude ε exceeds the cavity
decay rate κ .

The photon-induced tunneling can be better measured
by the second-order differential correlation function [66,67]
C(2)(0)=〈a†2a2〉 − 〈a†a〉2 = [g(2)(0) − 1]〈n〉2, which charac-
terizes the probability of generating simultaneously two
photons in the cavity. C(2)(0) > 0 denotes the photon-induced
tunneling effect. Figure 4(b) shows C(2)(0) as a function of
�/g. Two peaks arise at � = ±2g, and C(2)(0) increases with
increasing ε/κ . This means that the weak-probe limit is not
required for photon tunneling, which is different from photon
blockade at � = ±√

2g.
Since both one-photon and two-photon transitions depend

on the phonon state |m〉, the thermal noise of the mechanical
environment will degrade the quality of photon blockade and
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FIG. 5. (a) Second-order correlation function g(2)(0) versus �/g

for various thermal phonon occupancy nth. Parameters are selected
as ε/κ = 0.1, γ /κ = 0.001, and g/κ = 10. (b) Second-order corre-
lation function g(2)(0) versus nth at � = ±√

2g for different coupling
strengths g/κ . Parameters are chosen as ε/κ = 0.1 and γ /κ = 0.01.

photon-induced tunneling. The correlation function g(2)(0) as
a function of �/g for different thermal phonon occupations
n̄th is displayed in Fig. 5(a). It is noteworthy that, in the strong-
coupling regime, the feature of the one-photon transition
remains in the presence of a small but finite thermal phonon
number. Figure 5(a) also exhibits several interesting features of
the correlation function g(2)(0) for small thermal occupation.
First, at detuning � = 0, the photon bunching quickly converts
to antibunching when the thermal phonon number increases.
Second, except for the two-photon resonance at � = ±2g, sev-
eral new resonances emerge in the correlation function. In ad-
dition, in the case of zero temperature (n̄th = 0), there is neither
bunching nor antibunching at the large detuning � > 2g, but
at finite temperature new bunching and antibunching effects
appear. To understand these new features, we assume that the
mechanical mode is initially in a thermal state at temperature T

and the cavity in the vacuum state. The system can be depicted
by the density matrix ρ = (1 − p)

∑
m�0 pm|0m〉〈0m|, where

p = exp(−�ωm/kBT ). In this case, the splitting of the dressed
energy level is m dependent, so that the individual resonances
within each m subspace may be overlapped. The cumulative
effect of different phonon numbers leads to new resonances
and antibunching features [10–12]. Figure 5(b) presents g(2)(0)
as a function of n̄th at � = ±√

2g. The photon antibunching
[g(2)(0) < 1] still survives in the weak-coupling regime even
with a finite thermal phonon number. This result differs from
an early study [58] of photon blockade, in which the photon
antibunching disappears for small thermal phonon numbers
even in the strong-coupling limit.
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IV. EXPERIMENTAL PROSPECTS AND CONCLUSIONS

To generate photon blockade and photon-induced tun-
neling, the condition ωm � g > κ � γ must be satisfied.
Currently, some optomechanical systems have already demon-
strated a high mechanical frequency and low-loss optical
mode [54,55], so that the condition ωm � κ � γ is met.
The key challenge is the strong-coupling condition g > κ .
Fortunately, the single-photon quadratic coupling strength
g0 has been greatly enhanced, to 245 Hz, in the photonic
crystal optomechanical cavity [65], so that the strong-coupling
condition g > κ is possible for α ∼ 104 [55]. Although the
cavity decay rate and mechanical frequency in Ref. [65]
operate outside the sideband-resolved regime (κ = 5 GHz and
ωm = 10 MHz), it has been shown that a low-loss optical
mode κ = 20 MHz can be obtained in a similar planar silicon
photonic crystal [68], and a higher mechanical frequency,
ωm = 225 MHz, can be employed with some high-order
modes of the central nanobeam. Therefore, our proposal
could be implemented with currently available optomechanical
technology.

In summary, we have studied photon blockade and
photon-induced tunneling in a strongly driven optomechanical
system with quadratic coupling. By driving the cavity on

red two-phonon resonance, the effective nonlinear coupling
between photons and phonons can be enhanced and tuned
via adjustment of the driving amplitude. We have obtained
an approximate analytical solution as well as a numerical
simulation result for the second-order correlation function and
have found that the photon blockade at detuning � = ±√

2g

and photon-induced tunneling at detuning � = ±2g can be
realized in the strong-coupling regime g > κ . Our results
provide a possible route for realization of single-photon
nonlinearities and for applications of optomechanical systems
in quantum information processing.
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