Effects of intrinsic defects on effective work function for Ni/HfO₂ interfaces

Kehua Zhonga,c,**, Guigui Xua,b, Jian-Min Zhanga,c, Renyuan Liaoa,c, Zhigao Huanga,c,*

a Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou 350117, China
b Concord University College, Fujian Normal University, Fuzhou 350117, China
c Fujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen 361005, China

HIGHLIGHTS

- The interfaces with O–Ni combining bonds are more energetically favorable.
- The change of EWF is 1.8 eV for Hf terminated interfaces with Ni substitution for Hf.
- The change of EWF is 3.2 eV for Hf terminated interfaces with Hf vacancy.
- The change of EWF is 2.0 eV for O terminated interfaces with O vacancy.
- Results are explained by interface dipole density, ionic valence and occupied states.

ABSTRACT

The effective work functions and formation energies for Ni/HfO₂ interfaces with and without defects, including interfacial intrinsic atom substitution and atom vacancy in interfacial layer were studied by first-principles methods based on density functional theory (DFT). The calculated results of the formation energies indicate that the interfaces with O–Ni combining bonds in the interfacial region are more energetically favorable and a small amount O vacancy is comparatively easy to form in O–Ni interface, especially under O-rich situation. Moreover, the results of our calculations also reveal that, (1) the effective work functions strongly depend on the type of interface, interface roughness and atom substitution content in the interface region; (2) for Hf–Ni interfaces, two calculated effective work functions without and with Ni substitutions in whole interfacial Hf layer are good for nMOS and pMOS effective work function (EWF) engineering, respectively; (3) the EWFs are sensitive to Hf vacancy rather than Ni vacancy in interfacial layer for Hf–Ni interfaces; (4) oxygen vacancies can result in a decrease of effective work function for O–Ni interfaces. Additionally, we establish an expected theoretical relationship that variations of the EWFs are in proportion to that of interface dipole density. Finally, ionic valence state and occupied state are used to qualitatively analyze and explain the effects of interfacial defects on the EWF in metal-oxide interfaces. Our work suggests that controlling interfacial intrinsic atom substitution and interface roughness are attractive and promising ways for modulating the effective work function of Ni/HfO₂ interfaces.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

To solve the problems arising from the aggressive size down-scaling of metal-oxide-semiconductor field-effect transistor (MOSFET), both high dielectric constant “high-k” gate dielectric and metal gate electrode are required to replace the traditional SiO₂ gate dielectric and polycrystalline Si, respectively [1,2]. Because of its high dielectric constant, excellent thermal stability and
compatibility with various technical requirements, Hafnium oxide (HfO2) has emerged as one of the most preferred gate oxides in high-k metal gate technology [2–4]. While for desirable metal gate, an appropriate effective work function needs to satisfy the requirement that it lies near the valence and conduction band edges of Si substrate (about 4.1 eV and 5.2 eV for negative MOS [nMOS] and positive MOS [pMOS], respectively) [5]. There have been many studies [6–16] on tuning the effective work function (EWF) of metal-high-k gate stacks and several accompanying possible modulation methods for the EWF, such as binary alloys [6], bilayer metal gate technology [7], and atomic dopant [8–15]. However, even so, the EWF is difficult to control, especially for pMOS, due to its extreme sensitivity to a number of factors that can alter metal-oxide interfacial electronic properties. Typically, during the actual sample deposition and integration procedures, interfacial effects, such as lattice mismatch, interface reconstruction, defect accumulation, interfacial bond formation and dipoles formation, make achieving a suitable metal gate a challenge [3,17,18], because the EWF of the metal gate could differ from its vacuum work function [19–21].

It has been reported that the EWF may strongly depend on the processing conditions that the device is subjected to [22–26]. For instance, oxygen-rich or oxygen-deficient corrosion atom result in different interfaces [27]. Moreover, in the actual experimental deposition process, defects will inevitably exist in the interface of metal-oxide. For example, although the defect formation energies is relatively high, oxygen vacancies in HfO2 can be easily generated in actual devices with the help of the oxidation of underlying silicon [28,29]. The so-called extended Frenkel defect is found to be quite unfavorable for some metals like TiN [30] and Pt [31], it has been found to be energetically favorable for several other metals such as molybdenum [32], rhodium and nickle [33], and hafnium metal [34]. The defects such as oxygen vacancy and interstitial atoms segregating near metal-HfO2 interfaces, cause variation of interface EWF via changing the interface dipole strength [22,35–37]. Furthermore, the EWF of pMOS gate is sensitive to oxygen vacancy inside the metal/high-k interface [19,22]. As noted above, it is well known that defects in the interface strongly influence the electronic properties of metal-oxide interface. They can act as n- or p-type dopants that reduce or raise the EWF of interface, respectively. Therefore, an in-depth understanding of the physical origin for the effects of defects on the EWF is of great importance for the present and future MOSFET technology. Recently, the metal-HfO2 interfaces with oxygen vacancy have been investigated using first-principles calculations [18,31,32,36,37]. Cho et al. have found that oxygen vacancies are strongly attracted to the interface, in particular for the metal with high EWF, and the interfacial segregation of vacancies significantly affects the EWF of metals [31,36]. Vacuum work function of metal surface can be modulated by surface dipole layer [38–40], similarly, the EWF of metal-oxide interfaces can be tuned by interface dipole layer. Very recently, the interface dipole formed in metal-oxide interface was reported to strongly affect the EWF of the system [41–43]. Tse et al. found that a barrier height being about 0.9 eV lower than those of nonpolymer interfaces was produced by a large interface dipole for O-rich metal-HfO2 interfaces [41]. Bokdam et al. investigated the EWF in TiN/HfO2 interface consisting of either Ti–O or N–Hf interface bonds. They found that the replacement of O-rich bonds for N-rich interface bonds caused a decline of the EWF by up to 0.36 eV, which is attributed to the formation of opposing interface dipoles [43].

In fact, experimentally, the interfacial intrinsic atom substitution and interface roughness caused by the interfacial atom vacancy can be easily formed in the interfacial layer of metal-HfO2 interface. These defects should greatly change the EWF. Controlling interface roughness can thus be a good way to tune the EWF. Unfortunately, mechanism how intrinsic defects affect the EWF of metal-HfO2 is still unclear. This motivates us to investigate the impacts of the mixture of metal atoms from each side and interface roughness in metal-HfO2 interface. Furthermore, Ni is a typical gate metal material due to its high work function, thermal stability and good compatibility with high dielectric constant medium material.

In this paper, we systematically investigate the impacts of intrinsic defects on the EWF of the typical fcc-Ni(001)/c-HfO2(001) interfaces using first-principles calculations. Defects including mixture of Ni and Hf atoms, oxygen vacancy, Ni or Hf vacancy at interface region are considered. Two types of Ni(001)/HfO2(001) interface were considered: the HfO2 terminated with Hf atom layer (Hf–Ni interface) and the HfO2 terminated with O atom layer (O–Ni interface). The defective interfaces include Hf–Ni interface with Ni atoms substituting for the interfacial Hf atoms (referred as SNi interface), Hf–Ni interface with Ni vacancy in interfacial Ni layer (referred as VNi interface), Hf–Ni interface with Hf vacancy in interfacial Hf layer (referred as VHf interface), and O–Ni interface with O vacancy in interfacial O layer (referred as VO interface). We assess the stabilities of pure interfaces, SNi, VNi, VHf, and VO interfaces with various substitution or vacancy content under different growth environments according to formation energy of interfaces. We also find out the relationship between EWF and interface dipole. The calculated results indicate that the interfaces with O–Ni combining bonds in the interfacial region are energetically favored and a small amount O vacancy is comparatively easy to form in O–Ni interface, especially under O-rich situation. Furthermore, it is found that the mixture of Ni and Hf atoms, Hf vacancy and oxygen vacancy in the interfacial layer all play significant roles in the EWF. Finally, the expected theoretical relationship that the variations of EWFs are in proportion to that of interface dipole density is established. The EWFs' shifts caused by the interfacial defects are qualitatively explained in term of ionic valence state and occupied state.

This paper is organized as follows. In Section 2, we describe the details of the method for all calculations. In Section 3, we firstly calculate the formation energies for Hf–Ni and O–Ni interfaces with and without defects include interfacial atom substitution and atom vacancy and discuss the stability of those interfaces. Then we calculate the EWF and interface dipole for Hf–Ni and O–Ni interfaces with various defects. Additionally, we qualitatively analyze and explain the effects of interfacial defects on the EWF using ionic valence state and occupied state. Finally, we conclude our paper with a summary of what we found.

2. Method

All the calculations were performed using Vienna ab initio simulation package (VASP) with projector augmented wave approach [44–50]. The exchange correlation energy was calculated using PW91 generalized gradient approximation (GGA) [45]. With these pseudopotentials, the valence configuration was 6s25d4 for Hf atoms, the valence configuration was 4s3d5 for Ni atoms and 2s22p4 for oxygen atoms. Spin polarization was included, and the plane-wave basis cutoff was set at 400 eV. Our calculated lattice constant for bulk cubic-HfO2 is 5.405 Å, which is slightly lower than the experimental value of 5.08 Å [51]. Fcc-Ni(001) very good lattice match to cubic-HfO2(001) after relative 45° rotations. For Hf–Ni (O–Ni) interfaces, we employ the 2 × 2 interface supercells with 9 layers of Ni atoms, 7 layers of Hf atoms, and 6 (or 8) layers of O atoms and no vacuum [48]. The half supercells of these two types of interfaces without defects were shown in Fig. 1(a), (b), respectively. A 4 × 4 × 1 Monkhorst-Pack k-mesh was adopted for the calculations. To find the equilibrium structure of interfaces, the lateral lattice parameters were set to be the value of...
bulk ($a_{\text{HfO}_2}/\sqrt{2} \approx 3.553\text{Å}$) during the relaxation. Moreover, the Ni atoms, the top four (five) atomic layers of the HfO$_2$ surface for Hf–Ni (O–Ni) interfaces, and the vertical lattice vector were allowed to relax to minimize the DFT total energy. The atoms were fully relaxed through the conjugate-gradient algorithm until the residual force on each atom is less than 0.02 eV/Å.

3. Results and discussion

3.1. Formation energy of interfaces with defects

The relative stability of an actual interface with or without defects is generally given by the interface formation energy E_{form}, which is defined as [52].

$$E_{\text{form}} = \frac{E_{\text{Ni/HfO}_2} - (nE_{\text{Ni}} + mE_{\text{HfO}_2} + \pm \mu_0)}{2A},$$

where $E_{\text{Ni/HfO}_2}$ is the total energy of the interface supercell with or without defects, E_{Ni} and E_{HfO_2} is the total energies per Ni and HfO$_2$ bulk unit respectively, n and m denotes the numbers of Ni atoms and HfO$_2$ bulk units in the supercell respectively, and l indicates the corresponding number of oxygen atoms that has been added to (+) or removed (−) from the supercell. A is the area of the interface supercell. μ_0 denotes the chemical potential of oxygen, and is determined as follows

$$\frac{1}{2}(E_{O_2} + H_f) \leq \mu_0 \leq \frac{1}{2}E_{O_2},$$

where $H_f = -10.83$ eV denotes the formation enthalpy (by convention is negative) per formula unit for c-HfO$_2$, defined as

$$H_f = E_{\text{HfO}_2} - (E_{\text{Hf}} + E_{O_2}).$$

E_{O_2} and E_{Hf} are the DFT total energies per oxygen molecule and Hf atom in hcp–Hf bulk, respectively.

Fig. 2 shows the formation energies versus chemical potential of oxygen for Hf–Ni and O–Ni interfaces without or with defects. From Fig. 2 (a), it is found that S$_{\text{Ni}}$ interface with $\theta = 1.00$ ML (the whole interfacial Hf layer is substituted by Ni atoms) has the lowest formation energy in all the μ_0 ranges. It is noted that the formation energy decreases with the increase of θ under the same growth condition, especially in the O-rich conditions. Obviously, this indicates that Ni–O bond is more energetically favorable than Hf–O bond, and Ni prefers to substitute for Hf. Further, substituting Hf with Ni becomes more easily when the growth atmosphere evolves to be extremely O rich. This can be explained qualitatively by the
much larger electronegativity of Ni than that of Hf. Additionally, we can also see clearly from Fig. 2(a) that, the energy of S_{Ni} for $\theta < 0.50$ ML increases monotonically with μ_o on the contrary, it decreases with increasing μ_o for $\theta > 0.50$ ML. In particular, the energy of S_{Ni} with $\theta = 1.00$ ML is nearly close to that of O–Ni interface without O vacancy given as the case of $\theta = 0.00$ ML in Fig. 2(c). This may be due to the dominant role of different interfacial metal atoms. When $\theta < 0.50$ ML, Hf has a larger proportion than Ni and contributes more to interface structure. However, as $\theta > 0.50$ ML, the contribution of Ni to interface structure becomes more. Ultimately, a maximal substitution of Hf by Ni ($\theta = 1.00$ ML) turns the original Hf–Ni interface into similar O–Ni interface. Therefore, from another perspective, it is suggested that O–Ni interface may be superior to Hf–Ni interface during Ni/HfO$_2$ interface preparation.

From Fig. 2(b), it can be seen that, for all V_{Ni} and V_{Hf} interfaces except V_{Hf} with $\theta = 0.50$ ML, the formation energy increases as μ_o increases. Moreover, compared to the interface without defect, Ni vacancy existing in interfacial Ni layer for Hf–Ni interface causes energetically unstable, and the more Ni vacancy the higher the formation energy. However, Hf vacancy in Hf interface layer decreases the formation energy. Contrary to the case for Ni vacancy, the more Hf vacancy causes a lower formation energy. As shown in Fig. 2(b), for the V_{Hf} interface with $\theta = 0.50$ ML, Hf vacancy has the lowest formation energy for all the μ_o ranges. This implies that Hf vacancy is prone to exist in Hf–Ni interface, but Ni vacancy is hard to form in Ni interface region. It may be thought of as a result of different nearest neighbor number of metallic and ionic bonds for Ni and Hf atoms. The nearest neighbor atoms of Ni atoms have 10 metallic bonds. But, the nearest neighbor atoms of Hf atoms have 4 metallic and 4 ionic bonds.

For V_{O} interfaces, as can be seen clearly from Fig. 2(c), the formation of O vacancy defect would only become energetically unfavorable under the same growth condition, which is similar to previous research of O vacancy in HfO$_2$ [53]. Moreover, the formation energy increases as vacancy content q increases, and the changing amplitude also increases gradually as μ_o increases. This can be considered that there are plenty of oxygen atoms in the O-rich region, so that oxygen atom will prefer to fill interfacial vacancy due to oxygen’s leaving if an interfacial O vacancy occurs. Therefore, E_{form} increases more quickly as μ_o increases. In addition, similar to the case for S_{Ni} interface in Fig. 2(a), the changing trend of E_{form} versus μ_o in V_{O} interface for $\theta < 0.50$ ML is opposite to that for $\theta > 0.50$ ML. For V_{O} in O–Ni interface for $\theta < 0.50$ ML, O vacancy becomes more likely to occur under O-rich situation than under O-deficient situation. In this case, if there exists oxygen vacancy in interface region, the number of Ni–O bonds will decrease, and Hf–Ni interaction may appear. But, for smaller amount of O vacancy, Ni–O bonds may make a predominant contribution to interface structure. So the relationship between E_{form} and μ_o for interfaces with low O vacancy is similar to that for O–Ni interface without defects. On the other hand, for those V_{O} interfaces with θ being in the range of $\theta > 0.50$ ML, it is less likely that O vacancy in the interfacial region will be formed under O-rich situation than under O-deficient situation. As shown in Fig. 2(c), the formation energy increases much quickly with increasing value of μ_o. Additionally, it is noted that the change tendency of E_{form} with increasing value of μ_o for $\theta = 1.00$ ML is nearly close to that for Hf–Ni interface without any defects given as the case of $\theta = 0.00$ ML in Fig. 2(a). It can be explained as follows: with the increase of O vacancy in range of $\theta > 0.50$ ML, Ni–Hf interaction enhances generally, finally it leads to form Ni–Hf bond. Moreover, as O vacancy content further increases, Ni–Hf bonds increase but Ni–O bonds decrease. When $\theta = 1.00$ ML, the ionic bonding in O–Ni interface goes over into the metallic bonding, which is similar to Hf–Ni interface shown in Fig. 2(a). These results show that a small amount O vacancy in the interface region is comparatively easy to form in O–Ni interface, especially under O-rich situation.

The relative stability of an interface is given by its interfacial formation energy. The smaller the interfacial formation energy, the more stable the interface structure. On the contrary, the too high formation energy would prevent two materials to form interface. As shown in Fig. 2(a) and (b), for Hf–Ni interface without defects and all V_{Ni} interfaces, the formation energy increases as μ_o increases. Furthermore, the more Ni vacancy the higher the formation energy. When the interfacial formation energy is too high under the O-rich growth condition, Ni would no longer be expected to wet the surface of HfO$_2$.

3.2. Effective work function of interfaces with defects

Fig. 3 shows a schematic of a typical band lineup for a metal-oxide interface. The interface EWF ϕ_{eff} is generally estimated as [15,27,48,52].

$$\phi_{eff} = x_{HfO_2} + E_{g}^{HfO_2} - \phi_p,$$ \hspace{1cm} (4)

where x_{HfO_2} and $E_{g}^{HfO_2}$ is the electron affinity and band gap of HfO$_2$, respectively. The p-type Schottky-barrier height (SBH) ϕ_p is the difference between Ni Fermi energy and the oxide valence band maximum. The ϕ_p for interface can be obtained by using the standard “bulk-plus-lineup” [54,55] procedure, which is usually split into two terms:

$$\phi_p = (E_F^{Ni} - E_{VBM}^{HfO_2}) + \Delta V,$$ \hspace{1cm} (5)

where the first term is the energy difference between the metal Fermi energy and the oxide valence band maximum which are measured relative to the respective average of electrostatic potential, as obtained from two independent bulk calculations. The second term ΔV is the difference between the double macroscopic average of the electrostatic potential residing in Ni and HfO$_2$ bulk-like-regions respectively, which can be obtained using the double macroscopic average technique [56]. Combined Eq. (5) with Eq. (4), the EWF can be evaluated through the equation.

Fig. 3. The schematic view of band alignment at Ni/HfO$_2$ interface.
\[\phi_{\text{eff}} = \left(\chi_{\text{HfO}_2} + F_{\text{HfO}_2} + F_{\text{HfO}_2}^{\text{Hf}} - F_{\text{Ni}}^{\text{Ni}} \right) - \Delta V = \Delta E_{\text{bulk}} + D. \] (6)

In Eq. (6), the first term \(\Delta E_{\text{bulk}} \) represents intrinsic bulk electronic structure of the two bulk components. It is not related to the interface structure. While, the second term \(D \) summarizes the effect of the dipole barrier in the interface which is affected by all the interface effects, including chemical composition, defects in interface region and so on. In the calculation, the experimental values with \(\chi_{\text{HfO}_2} = 2.5 \) and \(E_{\text{HfO}_2} = 5.7 \text{ eV} \) were used [21]. As DFT underestimates the oxide gap, a GW correction of 1.23 eV for HfO\(_2\) valence band maximum has been considered [15,21]. And for Ni, 0.29 eV correction was added by comparing our DFT calculation value (4.93 eV) and the experimental value (5.22 eV) for the effective work function of Ni(001) surface. The overall corrections, \(-0.94 \text{ eV}\), are used in the following EWF calculation. Here, the negative sign means the corrections will decrease the EWF. Our calculations of p-type SBH for Hf–Ni and O–Ni interfaces of Ni(001)/HfO\(_2\)(001) are 4.00 and 2.06 eV respectively, which are close to the results of Ni(001)/ZrO\(_2\)(001) (3.80 and 2.13 eV) [27], indicating that our calculations are reliable for the EWF of interfaces.

Fig. 4(a) shows the EWF (\(\phi_{\text{eff}} \)) as a function of Ni substitution content \(\theta \) for Hf–Ni interfaces. Fig. 4(b) shows the EWF (\(\phi_{\text{eff}} \)) as a function of Ni or Hf vacancy content \(\theta \) for Hf–Ni interfaces. Fig. 4(c) shows the EWF (\(\phi_{\text{eff}} \)) as a function of O vacancy content \(\theta \) for O–Ni interfaces. From Fig. 4(a) and (c), the marked difference (about 2 eV) between the two effective work functions of Hf–Ni and O–Ni interfaces without defects can be observed clearly. This is due to their different types of chemical bond in interface region, more details can be found in Section 3.3. For SNi interfaces, it is found clearly from Fig. 4 (a) that the interfacial intrinsic atom substitution plays a significant role in determining the effective work function of the whole metal-oxide interface. For \(\theta < 0.50 \text{ ML} \), \(\phi_{\text{eff}} \) increases with the increase of substitution content \(\theta \), and the maximal changed value of effective work function reaches about 1.8 eV being from 4.15 eV to 5.96 eV. Although there is a relatively slow decline with increasing \(\theta \) for \(\theta > 0.50 \text{ ML} \), the value of \(\phi_{\text{eff}} \) decreases from 5.96 eV (\(\theta = 1.00 \text{ ML} \)) to 5.33 eV (\(\theta = 0.50 \text{ ML} \)). However, substituting Hf with Ni for Hf–Ni interfaces with \(\theta = 0.00 \text{ ML} \) (\(\phi_{\text{eff}} = 4.15 \text{ eV} \)) and \(\theta = 1.00 \text{ ML} \) (\(\phi_{\text{eff}} = 5.33 \text{ eV} \)) may be good for nMOS and pMOS EWF engineering, respectively. Furthermore, substituting Hf with Ni for Hf–Ni interface becomes much easier to occur in O rich condition for \(\theta > 0.50 \text{ ML} \), as shown in Fig. 2 (a). This implies that alloying in interfacial metal layer is a simple practical way of modulating the \(\phi_{\text{eff}} \) for Hf–Ni interface to satisfy the engineering requirement for metal gate technology. The difference between two changing trends of \(\phi_{\text{eff}} \) in ranges of \(\theta < 0.50 \text{ ML} \) and \(\theta > 0.50 \text{ ML} \) may be a result of comprehensive effect of two parts of interface dipole, one is from the ionic Hf–O (Ni–O) bonds in interfacial metal layer, and the other is from the positively charged interfacial metal layer and its image charge in Ni side. And we will discuss the effects of the two parts of interface dipole in more detail in subsequent Section 3.3.

From Fig. 4(b), we can see evidently that \(\phi_{\text{eff}} \) is not sensitive to Ni vacancy in interfacial Ni layer for Hf–Ni interface. Conversely, it strongly depends on Hf vacancy in interfacial Hf layer. It almost increases linearly with the increase of Hf vacancy content \(\theta \), and a considerably big increment of 3.2 eV corresponds to the vacancy content of \(\theta = 0.50 \text{ ML} \). Moreover, relative to the interface without defect, V\(_{\text{Hf}}\) interfaces are more energetically stable, and the more Hf vacancy content the more stable interface, shown in Fig. 2 (b). The calculated results indicate that the effects of different metal atom vacancy in interfacial layer on the EWF differ widely, which implies that controlling the vacancy content of suitable metal interfacial atom vacancy is also a possible way of tuning the EWF of metal-oxide interface. In other words, the interface roughness in the region of interface is quite important and should be taken with great concern in the EWF engineering in metal/high-k gate stack.

From Fig. 4(c), we can clearly find that the removal of oxygen results in the decrease of EWF for V\(_{\text{O}}\) of O–Ni interface as a whole. Moreover, the changing trend shows an initial linear rapid decrease for \(\theta < 0.50 \text{ ML} \) a more gradual and also almost linear decrease for \(\theta > 0.50 \text{ ML} \). This behavior is associated to the corresponding change trend for interface dipole which is related to electron transfer and
The value of ϕ_{eff} as a function of O vacancy content θ indicates that impact of O vacancy on the EWF mainly lies in low O vacancy content range of $\theta<0.50$ ML, where the value of ϕ_{eff} changes from 6.1 eV ($\theta = 0.00$ ML) to 4.2 eV ($\theta = 0.50$ ML). Meanwhile, it can be also found from Fig. 2(c) that VO interfaces with low O vacancy content are energetically favorable. This suggests that controlling O vacancy content is also a possible solution to modulate the EWF of O–Ni interface.

3.3. Interface dipole of interface

According to Eq. (6), the change of effective work function $\Delta \phi_{\text{eff}}$ stems from the changes of two bulk electronic structures and interface structure. If the change of the interfacer structure do not affect the two bulk components, $\Delta \phi_{\text{eff}}$ will be determined by the change of interface dipole barrier ΔD. Moreover, the change of interface dipole barrier ΔD is proportional to interface dipole density change $\Delta \rho$ that is similar to the behavior of surface dipole density [40], that is, $\Delta \phi_{\text{eff}}$ satisfies the relation of $\Delta \phi_{\text{eff}} = -\Delta P$. The electronic displacement and dipole formation in the interface can be observed by looking at the electron density of the entire interface minus the electron densities of the two separate constituent materials. The electron displacement in the formation of interface is defined as

$$\Delta n_{\text{inter}}(x,y,z) = n_{\text{inter}}(x,y,z) - n_{\text{Ni}}(x,y,z) - n_{\text{HfO}_2}(x,y,z).$$

(7)

Here, $n_{\text{inter}}(x,y,z)$, $n_{\text{Ni}}(x,y,z)$ and $n_{\text{HfO}_2}(x,y,z)$ are the electron density distributions of the interface, the clean metal and oxide layer, respectively.

Since only the component perpendicular to the interface is relevant, it is convenient to work with plane averaged charge density difference of the valence electron $\Delta \rho(z) = \frac{1}{2} \int \Delta n_{\text{inter}}(x,y,z) \, dx \, dy$. Z denotes the direction which is parallel to interface normal. The interface dipole density P can be given as [43,57].

$$P = -\frac{c^2}{2} \int \Delta \rho (z) \cdot z \, dz.$$

(8)

The center of metal Ni is chosen to be at $z = 0$, and $c^2/2$ corresponds to the center of HfO$_2$. The negative sign is introduced because positive regions of $\Delta \rho(z)$ are actually negatively charged.

The defects inside the interface may give different results in charge transfer and dipole density. The change of charge transfer due to defect in the interface is represented by the electron redistribution. And the redistribution is most straightforwardly described through the electron density difference. Fig. 5 shows the plane averaged charge density difference of valence electron $\Delta \rho(z)$ for Sn_Ni of Hf–Ni interface. The variation of interface dipole density derived from Eq. (8) could be applied to explain the change of EWF. The variation of the interface dipole density and the EWF as a function of defect content is simultaneously presented in Fig. 6. The theoretical prediction of $\Delta \phi_{\text{eff}} = -\Delta P$ can be seen in the figure.

For Sn_Ni of Hf–Ni interface, several features from Fig. 5 can be identified as follows: (1) metallic bonding between Hf and Ni atoms exists in the interface region for Hf–Ni interface without defect, namely, Sn_Ni with $\theta = 0.00$ ML. A well screening role coming from interfacial Hf atom layer permits the charge transfer only to take place in the zone between interfacial Hf and Ni atoms layers, as shown in Fig. 5. Ni and Hf atoms in the interface lose electrons, and the lost electrons are aggregated in the intermediate bonding zone between Ni and Hf atoms in the interface.

substitutes for Hf in interface region, due to Ni’s stronger electronegativity and different oxidation state, it can actually destroy the screening of interfacial Hf atom layer for the charge transfer from interfacial zone to interior of HfO$_2$, so electronic rearrangement is visible for $\theta = 0.25$ ML. And there is a considerable electron accumulation near interfacial O atom layer, thus the ionic bonding between O and Ni in interface layer appears. Consequently, there are two types of chemical bond coexisting in interface region. One is ionic Hf–O (Ni–O) bond, the other is metallic bonding between Hf and Ni atom. Accordingly, the total interface dipole comprises two parts: the first one, which is from the ionic Hf–O (Ni–O) bonds in interfacial metal layer, is pointing from Ni to HfO$_2$ and makes the EWF increase; the second one, which is from the positively charged interfacial Ni and Hf atoms mixing layer and its image charge in Ni side, is pointing from HfO$_2$ to Ni and makes the EWF decrease. So for $\theta<0.50$ ML, both factors act cooperatively to increase the EWF, as shown in Fig. 6. However, in high Ni substitution range of $\theta=0.50$ ML, the EWF decreases conversely. Its opposite change trend as substitution content θ can also be understood as follows: on the one hand, with a continual increase of Ni substitution, the electronegativity of metal mixing layer would continue to enhance.
Thus the part of dipole from metallic bonds continues to decrease accordingly. On the other hand, the interface zone between interfacial Ni and O layers becomes narrower with the increase of Ni substitution for θ=0.50 ML, as shown in Fig. 5. The distance of the z axis between interfacial metal atoms mixing layer and O layer becomes smaller as θ increases. Moreover, the amount of charge transfer also has a small decrease. Therefore, both effects above make a great drop in the part of dipole from Hf–O (Ni–O) ionic bond, which makes the EWF decrease. Eventually, the drop in part of dipole from ionic bonds surpasses the continual decrease of the bond, which makes the EWF decrease. Eventually, the drop in part of dipole from metallic bonds. Consequently, the change of dipole as a function of all substitution content θ is presented in Fig. 6. It can well explain the difference between two changing trends of ϕ_{eff} for θ<0.50 ML and θ>0.50 ML. Additionally, with the increase of θ, the electron accumulation has gradually moved from the original region (between Ni and Hf layers in the interface) into the area near O layer. In turn, now the losing and gaining of electrons mainly come from the mixing metal layer and interfacial O layer, respectively. Accordingly, the chemical bonds in the interface change from metallic bonds to ionic bonds, as seen in Fig. 5. Moreover, it can be seen from Fig. 5, for all S_{Ni} interfaces, dipoles are primarily due to the contributions of the interface layer Ni, Hf and O atoms, while the contributions of the layer which is most close to the interface are rather small, and that of the farther layers are negligible.

Fig. 7(a) and (b) show the plane averaged charge density differences $\Delta l(z)$ for V_{Hf} and V_{Ni} interfaces, respectively. One can easily notice that: (1) for V_{Hf} interface, $\Delta l(z)$ changes rapidly. Hf vacancy in interface leads to a smaller screening role of interfacial Hf layer on the electron in intermediate zone. In addition, O atoms which are near to Hf vacancy have a strong electronegativity. As a result, the electron accumulation moves from intermediate zone between interfacial Ni and Hf atoms layers to that area near interfacial O layer. Furthermore, the dipole layer moves to HfO$_2$ side, as shown in Fig. 7(a). Then, being similar to the case of S_{Ni}, there exist two kinds of chemical bonds that ionic bond and metallic bond between Hf and Ni atom. As Hf vacancy content increases, Hf atoms in defect layer move away from Ni atoms to O atoms, and the electron transfer between interfacial Ni and Hf layers reduces rapidly, while the electron accumulation moves to the region near O atom layer. For example, for θ = 0.50 ML, there is hardly any electron accumulation but only electron depletion in region between interfacial Ni and Hf, and the dipole is mainly from ionic bond. The large variation of the EWF caused by variation of total dipole is clearly seen in Fig. 8. (2) While for V_{Ni} interfaces, $\Delta l(z)$ only has small change. Moreover, despite the increase of Ni vacancy, the chemical bond in interface region remains metallic bond between Hf and Ni atom, which can be seen clearly from the charge density differences $\Delta l(z)$ in Fig. 7(b). This may be due to the almost constant electronegativity in Ni side. Even if Ni atoms are removed, the electronegativity of Ni side is almost not changed because of Ni’s delocalized electrons. And Ni’s removal affects the electron distribution in intermediate zone very weakly. As a result, the total dipole changes hardly as a whole, so the EWF does hardly too, as shown in Fig. 8.

The plane averaged charge density differences $\Delta l(z)$ for V_{O} interfaces are shown in Fig. 9. From the figure, it is found that ionic bonding between O and Ni atoms exists in interface region for O–Ni interface without O vacancy (θ = 0.00 ML). The interface dipoles are formed due to the electron accumulation near O layer and the electron depletion near Ni layer. As can be seen from the figure, unlike V_{Hf}, for all interfaces, the dipole layer does not move to HfO$_2$ side because of a very good screening role coming from interfacial Hf layer, which hinders the electron in intermediate zone to penetrate into HfO$_2$ side. From the figure, we can also find that intermediate zone becomes narrower with increasing θ. Moreover, the curves of Δl on the distance from Ni bulk z mainly represent the characteristic of ionic bond for all interfaces with θ<0.50 ML. While for interfaces with θ>0.50 ML, it represents the characteristic of metallic bond. For the interfaces with θ<0.50 ML, the gradually decreasing electronegativity of interfacial metal atoms due to O vacancies gives rise to a decline of dipole from ionic bond as θ increasing. It corresponds to the gradual reduction of amount of the
Interfaces with anolytically, the EWF decreases, as shown in Fig. 10. However, for the whole dipole, this corresponds to the phenomenon that the curves of dipole from ionic bond becomes smaller and smaller and interaction between metal atoms and oxygen atoms. So the part of the other hand, further increase of O vacancies weakens ionic bond, it still plays a dominant role in the whole dipole for electron accumulation or depletion, as shown in Fig. 9. When the increment of the oxygen vacancies reaches a critical value, the metallic bond appears. As a result, the distance between interfacial Ni layer and Hf layer becomes much closer. As a result, the total interface dipole and the EWF change slightly, as shown in Fig. 10.

3.4. Effective work function, ionic valence state and occupied state

In a metal-oxide interface, controlling the EWF of metal is actually to manipulate the relative position of Fermi level (E_F), and the EWF is associated with the atomic site-projected density of states (PDOS). We now try to explain qualitatively the mechanism of the above EWF’s shifts in terms of local bonding and changes of interface ionic valence state due to atom vacancy or substitution defects. Fig. 11(a)-(f) show the total density of states (TDOS) and the PDOS of different atoms residing in different layers for θ_{Ni} interfaces with θ from 0.00 ML to 1.00 ML, respectively. Fig. 12(a)-(d), Fig. 13(a)-(d) and Fig. 14(a)-(h) are those for θ_{Hf}, θ_{Ni} and θ_{O} interfaces, respectively. In Figs. 11(a), 12(a), 13(a) and 14(a), the energies of all interfaces align at the deep energy level of bulk oxide. As shown in Fig. 11(a), it can be seen clearly that the position of E_F in the band gap of bulk oxide is strongly dependent on mixing ratios of interfacial metal mixing layer. From Fig. 11(a)-(f), as a whole, substitution of Ni for Hf in interfacial layer shifts the Fermi level towards valence-band maximum (VBM) of HfO_2, resulting in substitution of Ni for Hf acting as an acceptor dopant (p-type doping). The changing trend of the Fermi level for different Ni substitution contents gives a qualitative account of the EWF behavior. We can also find that interface effects are restricted to the atomic planes in contact for all interfaces, which corresponds to the case of plane averaged charge density difference shown in Fig. 5. The PDOSs for interfacial Ni, Hf, O and substituted Ni atoms are perturbed by the formation of interface and alloying in interfacial metal layer. In energy range between E_F and VBM of HfO_2, it can be found that some occupied states are formed in substituted Ni, interface Hf and O layers. Furthermore, for $\theta_{\text{Ni}}<0.50$ ML, the PDOSs indicate that the interactions between interfacial atoms are mainly limited to substituted Ni, interfacial Ni and Hf atoms. There exist evident occupied states in the interfacial Hf atoms, which suggests that strong metallic bonding appears between the interfacial Ni and Hf atoms. Moreover, there is no sign of bonding between substituted Ni atoms and interfacial O atoms. In contrast, for $\theta_{\text{Ni}} \geq 0.50$ ML, the bonding between interfacial O and substituted Ni atoms in interface layer arises, and enhances with increasing θ, which indicates that ionic bonding exists between the interface Ni and O atoms.

Substitution of Ni for Hf in interface would cause interface charge redistributions and the change of oxygen-metal chemical bonds. The charge of change distributions will be directly reflected in the change of ionic valence state. To examine the change of ionic valence state due to the electron transfer at the interface, we calculate the number of electrons around the interfacial Hf, O and substituted Ni atoms using the Bader charge analysis, and compare the results with those for the inner atoms. For $\theta_{\text{Ni}} = 0.00$ ML, we find that interfacial Hf is positively charged, Hf$^{3.42}$ for $\theta_{\text{Ni}} = 0.00$ ML, then its oxidation state slightly reduces to Hf$^{3.30}$ and Hf$^{3.27}$ for $\theta_{\text{Ni}} = 0.25$ ML and 0.50 ML, respectively, but remains unchanged for $\theta_{\text{Ni}} \geq 0.50$ ML. This corresponds to the PDOS for interfacial Hf atoms in Fig. 11. Differently, substituted Ni is slightly positively charged, Ni$^{3.41}$ when $\theta_{\text{Ni}} = 0.25$ ML, then its charge increase to Ni$^{3.67}$ for $\theta_{\text{Ni}} = 0.50$ ML, and there appears a new higher oxidation state Ni$^{3.98}$ for $\theta_{\text{Ni}} = 0.50$ ML. To adjust the lower oxidation states of substituted Ni relative to the case for $\theta_{\text{Ni}} = 0.00$ ML than Hf’s, interfacial O atoms near substituted Ni atoms lose about 0.2 electrons for $\theta_{\text{Ni}} \leq 0.50$ ML, but a half of interfacial O atoms lose about 0.52 electrons for $\theta_{\text{Ni}} = 0.75$ ML, and then all interfacial O atoms lose about 0.52

![Fig. 9. Plane averaged charge density difference of valence electron $\Delta\rho(\xi)$ for VO of O–Ni interface.](image-url)

![Fig. 10. Variations of interface dipole density and effective work function as a function of vacancy content θ for VO of O–Ni interface.](image-url)
electrons when $\theta = 1.00$ ML. This indicates that a new lower anion valence state appears for $\theta > 0.50$ ML. This new lower valence state corresponds to the interfacial O’s DOS in Fig. 11(e) and (f), which indicates further that there exists a strong ionic bonding between the interfacial Ni and O atoms for $\theta > 0.50$ ML.

In Sn interfaces, these changes of interfacial ionic valence state would eventually affect the change of total interface dipole, which has been discussed in Section 3.3. The interface dipole will generate a corresponding electric field, which is equivalent to adding an extra bias voltage to the original one. As a result, it will give an additional potential energy. Moreover, substitution of Ni generates lower cation oxidation state. As a result, the interface acquire more holes to realize the transition from n-type to p-type for Ni/HfO$_2$ interface, which leads to more stable p-type occupied states near VBM. Therefore, the interface dipole and the occupied states in the interfacial Hf and O atoms result in a shifting of Ni’s DOS relative to the band structures of HfO$_2$, as shown in Fig. 11(b)-(f). In other words, they alter the position of interface Fermi level (E_F) in the oxide band gap, and hence shift the EWF.

For VHf interfaces, as shown in Fig. 12(a), the Fermi level in the band gap of bulk oxide depends critically on Hf vacancy content θ. Similar for the case of Sn interfaces, Hf vacancy in interfacial layer shifts the Fermi level to VBM of HfO$_2$, and acts as an acceptor dopant (p-type doping). From Fig. 12(b)-(d), we can also find that interface effects are restricted to the interfacial Ni, Hf and O atomic planes. The PDOSs for interfacial Ni, Hf and O atoms indicate that a small amount of Hf vacancy for $\theta = 0.25$ ML weakens the metallic bonds between interfacial Hf and Ni but enhances those ionic bonds between remaining interfacial Hf atoms and their neighboring O atoms. However, on the whole, it does not destroy the interfacial metallic bonding type. When Hf vacancy increases to $\theta = 0.50$ ML, the changes of interaction among interfacial Hf, Ni and O atoms continue to enhance and eventually lead to only ionic bonding in interface, as shown in Fig. 7 (a).
Fig. 12. Total density of states (TDOS) (a) and atomic site-projected density of states (PDOS) for V_{Hf} interfaces with (b) vacancy content $\theta = 0.00$ ML, (c) 0.25 ML, (d) 0.50 ML. In the PDOS, the symbols are defined as follows: for Ni and Hf in bulk region (Ni-bulk, Hf-bulk), interface metal Hf, Ni and O (Hf-int, Ni-int, O-int), oxygen in bulk region (O-bulk). The solid, dot and dash lines denote Fermi energy of interface, VBM and CBM of HfO$_2$, respectively. The energies of all interfaces in (a) align at the deep energy level of bulk oxide.

Fig. 13. Total density of states (TDOS) (a) and atomic site-projected density of states (PDOS) for V_{Ni} interfaces with (b) vacancy content $\theta = 0.00$ ML, (c) 0.25 ML, (d) 0.50 ML. In the PDOS, the symbols are defined as follows: for Ni and Hf in bulk region (Ni-bulk, Hf-bulk), interface metal Hf, Ni and O (Hf-int, Ni-int, O-int), oxygen in bulk region (O-bulk). The solid, dot and dash lines denote Fermi energy of interface, VBM and CBM of HfO$_2$, respectively. The energies of all interfaces in (a) align at the deep energy level of bulk oxide.
The ionic valence state might have changed because of the electron gain and loss. Interfacial Ni is originally negatively charged in forming Hf–Ni interface, due to its stronger electronegativity than Hf’s. However, Hf vacancy reduces the chemical bonding number of interfacial Hf and Ni, hence weaken the interaction between them. As a result, Ni’s originally negatively charged character weakens along with it. For instance, for $\theta = 0.50$ ML, interfacial Ni’s charge is Ni = -0.15, and Ni loses about 0.5 electrons relative to that in interface without defect. Moreover, remaining interfacial Hf atoms for $\theta = 0.50$ ML gain about 0.2 electrons, and its

Fig. 14. Total density of states (TDOS) (a) and atomic site-projected density of states (PDOS) for V$_2$ interfaces with (b) vacancy content $\theta = 0.00$ ML, (c) 0.125 ML, (d) 0.25 ML, (e) 0.50 ML, (f) 0.625 ML, (g) 0.75 ML, (b) 1.00 ML. In the PDOS, the symbols are defined as follows: for Ni and Hf in bulk region (Ni-bulk, Hf-bulk), interface metal Hf and Ni (Hf-int, Ni-int), sub-interface oxygen (O-2nd), oxygen in bulk region (O-bulk). The solid, dot and dash lines denote Fermi energy of interface, VBM and CBM of HfO$_2$, respectively. The energies of all interfaces in (a) align at the deep energy level of bulk oxide.
neighboring O atom loses about 0.3 electrons relative to that for \(\theta = 0.00 \) ML. Their charges are Hf\(^{1.22} \) and O\(^{-1.70} \), respectively. Similar to the case for SNi interfaces discussed above, these changes of ionic valence state directly affect original total interface dipole and the occupied states, and ultimately make interface's Fermi level move very close to the VBM of HfO\(_2\), as shown in Fig. 6, thus the EWF is enhanced.

For V\(_{Ni}\) interfaces, however, the Fermi level changes differently from that for above V\(_{Hf}\) interfaces, it does not depend on Ni vacancy content and is fixed, as shown in Fig. 13(a). Consequently, the EWF changes little accordingly. Fig. 13(b)-(d) show the PDOS for interfacial Ni, Hf and O atoms. From the figure, it is observed that they are nearly not affected by Ni vacancies in interfacial layer. That is, these Ni vacancies do not alter the metallic bonding between Hf and Ni atoms in interface, but only generate a little perturbation.

Fig. 14(a)-(h) show total density of states (TDOS) and atomic site-projected density of states (PDOS) for V\(_{O}\) interfaces with vacancy content \(\theta = 0.00 \) ML, 0.125 ML, 0.25 ML, 0.50 ML, 0.625 ML, 0.75 ML and 1.00 ML. In contrast to the cases for SNi and V\(_{Hf}\) interfaces, for V\(_{O}\) interfaces, oxygen vacancy acts as a donor dopant (n-type doping), as shown in Fig. 14(a). The Fermi level in the band gap of bulk oxide is strongly dependent on O vacancy content \(\theta \), especially for \(\theta \leq 0.50 \) ML. It shifts towards the conduction band minimum (CBM) of HfO\(_2\). From Fig. 14(b)-(g), we can find that for a small amount of O vacancy (\(\theta \leq 0.50 \) ML), interfacial Ni atoms mainly bond to their neighboring O atoms and their bonds weaken with increasing \(\theta \). While for \(\theta > 0.50 \) ML, the interaction between Ni and O becomes very weak. Instead, with increasing O vacancies the bonds between the interfacial Ni atoms and their neighboring Hf atoms are enhanced and the occupied states near CBM are increased. The type of chemical bond is turned from ionic bonding to metallic bonding, which is consistent with the results shown in Fig. 9.

O vacancy is commonly formed in the metal oxide interface \([31,36]\). Thus, the emergence of O vacancy means there are additional Ni and Hf dangling bonds around vacancy site, and it is equivalent to releasing electrons. Consequently, it makes all its neighboring Ni, O and Hf atoms gain electrons. For example, the original interfacial Ni cations in interface with \(\theta = 0.25 \) ML gain about 0.3 electrons relative to that in interface without O vacancy, but remain their positively charged features. However, when \(\theta \geq 0.50 \) ML, they turn into being negatively charged features. Finally, it becomes Ni\(^{-0.8}\) for \(\theta = 1.00 \) ML. But for Hf, it always has a positive charge. Moreover, for \(\theta \leq 0.50 \) ML, its positive nature weakens because of gaining electrons, such as Hf\(^{1.35}\) for \(\theta = 0.00 \) ML but Hf\(^{3.31}\) for \(\theta = 0.50 \) ML. However, it has a little enhancement for \(\theta > 0.50 \) ML, such as Hf\(^{3.14}\) for \(\theta = 1.00 \) ML. Remaining O in interfacial layer has an increasing negative charge only for \(\theta \leq 0.50 \) ML, O\(^{-1.43}\) for \(\theta = 0.00 \) ML and O\(^{-1.65}\) for \(\theta = 0.50 \) ML but remains unchanged for \(\theta > 0.50 \) ML. It agrees with those localized PDOS of interfacial O in Fig. 14(c)-(h). These changes of ionic valence state caused by O vacancy also affect the interface dipole. Moreover, compared to the cases for SNi and V\(_{Hf}\) interfaces above, it has an opposite effect on interface dipole. That is, it pushes \(E_f \) to CBM of HfO\(_2\) and then makes the EWF decrease. At the same time, the change trend of interfacial ionic valence state for \(\theta \leq 0.50 \) ML is different from that for \(\theta > 0.50 \) ML, as described above. And this is consistent with the phenomenon that interfacial chemical bonding is turned from ionic bonding to metallic bonding, shown in Fig. 9.

To sum up, the interface dipole and the p-type occupied states near CBM of HfO\(_2\) result in a shift of Ni’s DOS relative to the band structures of HfO\(_2\), which explains nicely the change of the EWF in Fig. 4(c).

4. Conclusions

In summary, we systematically studied the EWF and formation energies for Hf–Ni and O–Ni interfaces with and without defects including interface intrinsic atom substitution and atom vacancy in interfacial layer using first-principle calculation. The calculated formation energies indicate that O–Ni combining bonds may energetically be superior to Hf–Ni combining bonds during Ni/HfO\(_2\) interface preparation, and a small amount of O vacancy is comparatively easy to form in O–Ni interface, especially under O-rich condition; Hf vacancy is prone to exist in Hf–Ni interface while Ni vacancy is hard to form in Ni interfacial region. Moreover, our results show that the EWF strongly depends on the type of interfaces, interface roughness and atom substitution content in interfaces, and the EWF of O–Ni interface without defects is as higher as 2.0 eV than that of Hf–Ni interface without defects. For Hf–Ni interfaces, it is found that two calculated effective work functions of interfaces without and with Ni substitution for whole interfacial Hf layer are good for nMOS and pMOS effective work function (EWF) engineering. Farther, one notices that Hf and O vacancies give rise to a considerably large EWF changes while Ni vacancy leads to an insensitive change of EWF. In addition, we obtain an expected theoretical relationship between metal contaminations of the EWFs are in proportion to that of interface dipole density. Ionic valence state and occupied state are used to qualitatively analyze and explain the effects of interface defects on the EWF. Our work suggests that controlling interfacial intrinsic atom substitution or interface roughness is a very attractive and promising way for modulating the EWF of Ni/HfO\(_2\) interfaces, which is significant for the metal gate technology and application.

Acknowledgments

This work is supported by the National Science Foundation of China (61574037, 61404029, 11404058, 11274064), National Key Project for Basic Research of China under Grant No. 2011CB940200, Educational Department of Fujian Province, China (JA14092).

References
