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Theoretical exploration of competing phases of lattice Bose gases in a cavity
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We consider bosonic atoms loaded into optical lattices with cavity-mediated infinite-range interactions.
Competing short- and global-range interactions cultivate a rich phase diagram. With a systematic field-theoretical
perspective, we present an analytical construction of a global ground-state phase diagram. We find that the
infinite-range interaction enhances the fluctuation of the number density. In the strong-coupling regime, we find
four branches of elementary excitations, with two being “particlelike” and two being “holelike,” and that the
excitation gap becomes soft at the phase boundary between compressible phases and incompressible phases.
We derive an effective theory describing compressible superfluid and supersolid states. To complement this
perturbative study, we construct a self-consistent mean-field theory and find numerical results consistent with our
theoretical analysis. We map out the phase diagram and find that a charge density wave may undergo a structure
phase transition to a different charge density wave before it finally enters into the supersolid phase driven by
increasing the hopping amplitude.
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I. INTRODUCTION

Ultracold gases in optical lattices are one of the most
intriguing systems in which the power of atomic and laser
physics can be exploited to explore generic phenomena of
solid-state physics [1]. They have been proven to be impres-
sively successful in simulating strongly correlated models such
as the Bose-Hubbard models, which feature a quantum phase
transition from a superfluid to a Mott-insulating phase [2,3].
Recent years have seen major advances in the exploration of
many-body systems in which matter is strongly coupled to light
[4]. In particular, recent experimental realization of competing
short- and infinite-range interactions [5] for bosonic atoms in
optical lattices has opened a new avenue for exploring new
phases of matter. This is achieved by trapping quantum gases
in an optical lattice inside a high-finesse optical cavity. The
infinity-range interactions are mediated by a vacuum mode of
the cavity and can be independently controlled by tuning the
cavity resonance [6–8].

The essential physics of this system falls into the category
of the extended Hubbard model [9,10]. In the presence of
the global-range interactions, novel phases such as the charge
density wave (CDW) and supersolid (SS) phases emerge,
in addition to the conventional superfluid (SF) phase and
Mott-insulating (MI) phase. Understanding the phase diagram
and related phase transition has been the focus of recent
studies [11–18]. These studies mainly concentrated on global
phase diagrams and drew heavily on sophisticated numerical
methods, making the study of the properties of these phases
and analytical methods to understand the underlying physics a
useful complement.

In this study, we shall explore the relevant physics trans-
parently by employing both an analytical approach and a
numerical approach. The findings of our study are twofold:
On the one hand, in the atomic limit, we obtain analytically

the ground-state energy density. With this, we construct the
phase diagram consistent with the previous numerical ap-
proach [16,18]. Based on this, we carry out a field-theoretical
analysis [19–25], by which physics close to phase boundaries
between compressible phases and noncompressible phases can
be qualitatively examined. On the other hand, we construct a
self-consistent local mean-field theory which is numerically
cheap. With this, we find interesting structural phase transitions
between a different charge density wave driven by hopping
amplitudes before it enters the supersolid phase.

The paper is structured as follows: In Sec. II, the model
is introduced. We present a functional integral formulation of
this problem. In the atomic limit, we construct the ground-state
phase diagram analytically. Then we proceed to study physics
close to the compressible and incompressible boundaries by
carrying out perturbative expansion on the hopping parameter,
which is assumed to be small. In Sec. III, we formulate a
self-consistent mean-field theory, by which the properties of
compressible phases are investigated. Finally, in Sec. IV, the
conclusions are drawn.

II. MODEL AND FIELD-THEORETICAL TREATMENT

We consider the system described by the following canon-
ical Hamiltonian realized very recently [5]:

Ĥ = −
∑
〈ij〉

(tij b̂
†
i b̂j + H.c.) + U

2

∑
i

n̂i(n̂i − 1)

− K

M

[∑
i∈e

n̂i −
∑
i∈o

n̂i

]2

−
∑

i

μn̂i . (1)

Here, tij is the hopping matrix element between site i and site
j , b̂

†
i and b̂j are the bosonic operators satisfying commutation
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relation [b̂†i ,b̂j ] = δij , n̂i = b̂
†
i b̂i is the associated number

operator which counts the particle number on site i, and μ is
the chemical potential. The subscript e (o) refers to even (odd)
lattice sites i = (ix,iy) of the square-lattice potential defined as
ix + iy ∈ even (odd), and 〈ij 〉 denotes the pair of site i and j .
The on-site repulsive interaction is characterized by U , while
the infinite-range attractive interaction is denoted by K , which
favors overall particle-number imbalance between even and
odd sites. The interplay of three energy scales is expected to
give rise to a multitude of ground-state manifolds.

Within the framework of a Euclidean functional inte-
gral, the partition function of the system may be cast as
Z = ∫

D[b∗
i ,bi]e−S with the action given by [26,27] S =∫ β

0 dτ
∑

i [b∗
i ∂τ bi + H (b∗

i ,bi)], where β = 1/kBT is the in-
verse temperature. To decouple the off-site terms in the action,
we introduce a real field θ (τ ) and complex bosonic fields �i(τ )
by performing Hubbard-Stratonovich transformations, result-
ing in an equivalent representation of the partition function,

Z =
∫

D[�∗
i ,�i]

∫
D[θ,b∗

i ,bi]e
−SR , (2)

where the resultant action is given by SR =∫ β

0 dτ
∑

ij �∗
i t−1

ij �j + S0 + SI with

S0 =
∫ β

0
dτ

∑
i

[Kθ2 − 2Kθ (−1)ix+iy b∗
i bi]

+
∑

i

[
b∗

i (∂τ − μ)bi + U

2
b∗

i b
∗
i bibi

]
, (3)

SI = −
∫ β

0
dτ

∑
i

(�∗
i bi + b∗

i �i). (4)

Before embarking on detailed analysis with field-theoretical
machinery, we make some comments. The free part S0 is
readily solvable since the corresponding Hamiltonian Ĥ0(θ ) =∑

i Ĥ0i(θ ) can be diagonalized in the occupation-number
representation. With the interacting part SI present, the physics
could not be solved in a closed form; however, we can gain
physical insights by seeking perturbative expansion on top of
S0 in terms of fields �i , which serves as the superfluid order
parameter.

Now we subject the action SR to a saddle-point analysis.
The extremum of variation of the action with respect to θ (τ )
yields θ = ∑

i(−1)ix+iy 〈n̂i〉/M . The physical meaning is clear:
Mθ counts the particle-number difference between even sites
and odd sites, and θ could be regarded as an order parameter
representing charge degrees of freedom.

Let us consider the atomic limit where the hopping ampli-
tude between sites is negligible (tij /U = 0) and the resultant
action reduces to a free one: SR = S0. The eigenvalue corre-
sponding to Ĥ0 per “supercell” (with one even and one odd
site) after taking into account the self-consistency conditions
for θ is given by

E(ne,no) = U

4

[
(ne + no) −

(
1 + 2μ

U

)]2

+ U

4

[(
1 − 2K

U

)
(ne − no)2 −

(
1 + 2μ

U

)2]
. (5)

FIG. 1. Global ground-state phase diagram spanned by μ/U and
K/U at the atomic limit (tij /U = 0). The phase diagram can be
loosely divided into three regimes depending on the strength of the
infinite-range interaction: (1)K/U ∈ (0,0.5), where the system is
either in a Mott-insulating (MI) phase with ne = no or in a partially
polarized charge density wave (CDW) phase with ne − no = 1, where
we always assume ne � no as the system enjoys an Ising-type Z2

symmetry; (2)K/U ∈ (0.5,1), where the system is in a fully polarized
CDW phase with no = 0; (3)K/U > 1, where the system is unstable
toward collapse.

Here, ne(no) represents the occupation number of one even
(odd) site. The ground state is achieved by minimizing the
eigenvalue E(no,ne) with respect to quantum numbers ne

and no. Since the system enjoys an Ising-type Z2 symmetry
corresponding to exchange of even and odd sites, we may
choose ne � no from now on. To facilitate the analysis, we
define 1 + 2μ/U = n + x, with n = int[1 + 2μ/U ] being the
integer closest to 1 + 2μ/U , and x ∈ (−1/2,1/2). First, let
us consider the case K/U ∈ (0,1/2), where the system is
in a Mott-insulating (MI) phase with ne = no = n/2 if n is
even. If n is odd, then the system is in the MI phase when
K/U < |x|, and in a partially polarized charge density wave
(CDW) phase with ne = no + 1 = (n + 1)/2, and vice versa.
Second, if K/U ∈ (1/2,1), the system enters into a fully
polarized CDW phase with ne = int[ 1+2μ/U

2(1−K/U ) ] and no = 0.
Finally, if K/U > 1, the ground energy is unstable toward
collapse since it corresponds to an infinite filling. The above
discussions for the ground-state phase diagram are summarized
in Fig. 1.

The low-temperature properties of the system may be
captured by only considering the particle and hole excita-
tions on one supercell [28] since tunneling between sites is
completely neglected and hence the system consists of iso-
lated pair sites. For brevity, let us define Cp = ∑

s=e,o e−βEsp

and Ch = ∑
s=e,o e−βEsh , where Esp and Esh are the particle

and hole excitation on the s = (e/o) site, respectively. To
put it explicitly, Eep = E(ne + 1,no) − E(ne,no) and Eeh =
E(ne − 1,no) − E(ne,no), and similarly for Eop and Eoh. The
partition function on one supercell is therefore approximated as
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FIG. 2. Temperature dependence of (a) the variation of particle
number δn on one supercell (with one even site and one odd site) and
(b) isothermal compressibility κT for the MI(1,1) phase at different
infinite-range interaction strengths K/U = 0, 0.1, 0.2, and 0.3. Here,
μ/U = 0.60 and v0 is the volume of one supercell.

z0 = e−βE(ne,no)(1 + Cp + Ch). The variation of density fluc-
tuations on a supercell is given by δn = (Cp − Ch)/(1 + Cp +
Ch). Equivalently interesting are the square density fluctuations
δn2 ≡ 〈n2〉 − 〈n〉2, which is related to the isothermal com-
pressibility via thermodynamic relation δn2 = 〈n〉2κT v0/β,
with v0 being the volume of one supercell. We find that δn2 =
(Cp + Ch + 4CpCh)/(1 + Cp + Ch)2. The temperature de-
pendence of δn and κT is shown in Fig. 2. At zero temperature,
the particle-number fluctuation and thermal compressibility is
frozen out, indicating its noncompressible nature. It clearly
indicates that the larger K/U is, the larger thermal fluctuation
it induces. We attribute this fluctuation-enhancing behavior to
the effects of the infinite-range interactions.

We proceed to take into account the effects of a finite
hopping amplitude. We can evaluate the partition function by
performing Taylor expansion in the exponent,

Z
Z0

=
∫

D[�∗
i ,�i]e

− ∫
dτ

∑
ij �∗

i t−1
ij �j

〈∑
l=0

Sl
I

l!

〉
0

, (6)

where 〈O〉0 = (
∫

e−S0O)/(
∫

e−S0 ). To the quadratic order
in the fields �i , by transforming to momentum-frequency
representation, we obtainZ/Z0 = ∫

D[�∗(k),�(k)]e−Sg with
the Gaussian action given by

Sg = M

2

∑
k=(k,iwn)

�†(k)G−1(k)�(k), (7)

where we have defined �(k) = (�e(k),�o(k))T and used a
shorthand notation k = (k,iwn), with wn being the bosonic
Matsubara frequencies. The inverse Green’s function assumes
the form of a 2 × 2 matrix,

−G−1 =
(

ne+1
Eep−iwn

+ ne

Eeh+iwn
−t̃−1(q)

−t̃−1(q) no+1
Eop−iwn

+ no

Eoh+iwn

)
. (8)
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FIG. 3. Four branches of excitation spectrum ωi (i = 1, . . . ,4) at
momentum k = (�0,0) as a function of tunneling parameter zt/U for
(a) the MI(1,1) phase with μ/U = 0.50 and K/U = 0.25, and (b) the
CDW(2,1) phase with μ/U = 1.0 and K/U = 0.40. The upper two
branches are particle excitations and the lower two branches are hole
excitations. For both insulating phases, there exists an energy gap for
a particle-hole excitation, manifesting their noncompressible nature.
Here, z = 4 is the coordination number for square lattices.

In the above, t̃−1(q) is the Fourier transform of t−1
ij . For

convenience, we shall consider the nearest-neighbor hopping
only with amplitude t , then t̃−1(q) = 1/[2t

∑d
j=1 cos (kjλ/2)],

with d being the dimension of the system and λ being the
wavelength of the laser field forming the optical lattices.

The excitation spectrum of the system corresponds to the
poles of the Green’s function. It can be readily found by seeking
solutions ω for the secular equations det G−1(k,ω) = 0. It
features four branches of excitation spectrum ωi (i = 1, . . . ,4),
as shown in Fig. 3 at k = (�0,0) in terms of the tuning parameter
zt/U , with z = 4 being the coordination number of square
lattices. In the absence of hopping (zt = 0), the incompressible
MI(1,1) phase possesses only one type of particle excitations
and one type of hole excitations, while the incompressible
CDW(2,1) phase carrying charge order possesses two types of
particle excitations and two types of hole excitations. At a finite
hopping, these two phases both accommodate two branches of
particle excitations and two branches of hole excitations. The
minimal energy difference between one particle excitation and
one hole excitation corresponds to the energy gap for density
fluctuations. This excitation gap becomes soft at the phase
boundary, where phase transition from a noncompressible
phase to a compressible phase occurs.

The phase boundary separating the superfluid phase and the
noncompressible phase occurs [21,22,29] at det G−1(0,0) = 0,
which yields

(
ne + 1

Eep

+ ne

Eeh

)(
no + 1

Eop

+ no

Eoh

)
= 1

(zt)2
. (9)
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FIG. 4. The phase boundary separating compressible (SF or SS)
and noncompressible (MI or CDW) phases for two typical infinite-
range interaction strengths: (a) K/U = 0.10 and (b) K/U = 0.25.
Increasing K/U leads to the broadening of the region of CDW phases
and the shrinking of the region of MI phases. Here a SF phase stands
for a superfluid phase which has off-diagonal long-range order, and a
SS phase stands for a supersolid phase which has both diagonal and
off-diagonal long-range orders. Here the unlabeled small lobes are
CDW phases generated by the infinite-range interaction.

We show the phase boundary in Fig. 4. Evidently the regime
of the MI phase diminishes as K/U increases. In stark
contrast, the regime of the CDW phase gets broadened as K/U

increases. This suggests that the infinite-range interaction
favors the formation of density modulation in the form of a
checkerboard pattern with alternating site occupation.

To explore the physics of compressible superfluid and super-
solid phases, we proceed even further by evaluating the action
to the quartic order in order parameter �i , S = S0 + Sg +
S4 with S4 = ∑

ss ′
∑

k+l=m+n uss ′�∗
s (k)�∗

s ′ (l)�s ′(m)�s(n),
where we may evaluate the coefficients uss ′ at zero momentum
and zero frequency [23]. By performing derivative expansion,
we keep only the most relevant terms in a long-wavelength
approximation, and obtain an effective action of the Ginzburg-
Landau-Wilson type [30,31],

S − S0 =
∫

dτ
d2r
2

∑
s

(rs |�s |2 + as�
∗
s ∂τ�s + bs |∂τ�s |2

+uss |�s |4) +
∫

dτ
d2r
2

[
reo�

∗
e

(
1 − λ2∇2

16

)
�o

+ c.c. + ueo|�e|2|�o|2
]
. (10)

To present the coefficients above in a succinct fashion, we
define As = (ns + 1)/E2

sp and Bs = ns/Esh. Then the relevant
coefficients are given as follows: rs = −(AsEsp + BsEsh),
as = As − Bs , bs = As/Esp + Bs/Esh, reo = 1/(zt),

uss = (As + Bs)(AsEsp + BsEsh) − As(ns + 2)/Es2p −
Bs(ns − 1)/Es2h, and

ueo

K
= AeAo

Eep + Eop

Eep + Eop + K
+ BeBo

Eeh + Eoh

Eeh + Eoh + K

−
∑
s=e,o

AsB−s

Esp + E−sh

Esp + E−sh − K
. (11)

Here, Ee2p = E(ne + 2,no) − E(ne,no) is the “double par-
ticles” excitation energy at even sites and Ee2h = E(ne −
2,no) − E(ne,no) is the “double holes” excitation energy at
even sites, and similar expressions for Eo2p and Eo2h. The uni-
versality class and associated quantum criticality is intimately
related to the relevant parameters given above.

At zero temperature, we assume that field configurations
for �e and �o are spatially and temporally homogenous. The
grand potential � = − lnZ/β of the system reduces to a
simple form as follows:

� = �0 +
∑
s=e,o

rs |�s |2 + reo(�∗
e �o + c.c.)

+
∑
s=e,o

uss |�s |4 + ueo|�o|2|�e|2. (12)

Quite generally, the realization of the phase is determined
by seeking the global minimum of �. The saddle-point
condition ∂�/∂�s = 0 yields 2rs�s + 2reo�−s + 4uss�

3
s +

2ueo�s�
2
−s . Clearly, if �s = 0, then from the above equation

we immediately obtain �−s = 0, namely, �e and �o vanishes
identically at the transition point. The phase boundary is
determined by rore = r2

eo, which reproduces Eq. (9). Typically
close to the phase boundary, the order parameter field satisfies a
simple scaling, �s/�−s = reo/rs = √

r−s/rs . At this level, the
phase transition is a continuous one. However, when the system
is deep into a superfluid phase with a crystalline order, there
may induce a structural transition (where quantum numbers
ne and no change) from a CDW phase to another CDW
phase. We expect it to be a first-order one since it involves a
discontinuous change of the free energy. In broken-symmetry
phases, the order parameters are determined by the coefficients.
The grand potential is fully determined as � = �0(ne,no,μ) +
δ�(ne,no,μ,zt). Given μ and zt , the global minimum of the
grand potential is achieved by minimizing over a non-negative
integer of ne and no. However, it should be noted that such
perturbative treatment only give qualitatively sensible physics
for the regime deep into the compressible phases.

III. SELF-CONSISTENT MEAN-FIELD THEORY

The perturbative treatment given in the previous section is
valid only for a small hopping parameter. To explore physics
deep into the compressible phases, we resort to a self-consistent
mean-field approximation formulated below. The mean-field
Hamiltonian for a supercell can be constructed as follows:

ĤMF =
∑
s=e,o

[
U

2
n̂s(n̂s − 1) − μn̂s

]
− 2Kθ (n̂e − n̂o)

− zt[(ψob̂
†
e + ψ∗

e b̂o − ψoψ
∗
e ) + H.c.] + 2Kθ2. (13)
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FIG. 5. Self-consistent mean-field calculation at zero temperature
for K/U = 0.4 and μ/U = 1.0. (a) The magnitude of the order
parameters |ψe| and |ψo| in the supersolid phase as a function of
zt/U . (b) The density at even site ne and odd site no as a function of
zt/U .

We may diagonalize HMF in the basis spanned by |ne >⊗ |no > by simultaneously imposing self-consistency condi-
tions for the charge order parameter θ = 〈n̂e − n̂o〉/2 and for
the superfluid order parameters ψe = 〈b̂e〉 and ψo = 〈b̂o〉. It
is clear that for self-consistent equations, there always exists
a trivial solution with ψe = ψo and θ = 0 which corresponds
to the SF phase. For a SS phase to be a true ground state,
we require that its ground energy is lower than that of a SF
one.

The numerical results from this self-consistent theory are
shown in Figs. 5–7. For K/U = 0.4, μ/U = 1.0, and zt/U =
0, the system is evidently in the phase of CDW(2,1), as could
be read from Fig. 1. Now the evolution of the order parameters
with respect to the tuning parameter zt/U is shown in Fig. 5.
Across the transition point zt/U = 0.123, both ψe and ψo

acquire a nonzero value, signaling that the system enters
into a SS phase. When zt/U is further increased to zt/U =
0.192, the system enters into the SF phase with ψe = ψo

and φ = 0. This observation is consistent with our general
arguments made above based on Landau-type free energy. The
behavior of number density clearly follows the steps of the
superfluid order parameters. Now let us turn to Fig. 6, where
at zt/U = 0 the system is in the phase of CDW(4,0) since
we choose K/U = 0.7 and μ/U = 1.0 for illustration. As

0 0.5 1 1.5zt/U
0

1

2

ψ

ψe

ψo

0 0.5 1 1.5zt/U0

2

4

6

n ne

no

(b)

(a)

FIG. 6. Self-consistent mean-field calculation at zero temperature
for K/U = 0.7 and μ/U = 1.0. (a) The magnitude of the order
parameters |ψe| and |ψo| in the supersolid phase as a function of
zt/U . (b) The density at even site ne and odd site no as a function of
zt/U .

0 0.5 1 1.5 2μ/U
0
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0.2

0.3

z
t/

U

MI

SS
SF

CDW

FIG. 7. Phase diagram spanned by zt/U and μ/U from the self-
consistent mean-field calculation for K/U = 0.4.

clearly seen in Fig. 6(b), with the increase of hopping parameter
zt/U , the system first undergoes a structure transition from
CDW(4,0) to CDW(5,0), and further increment of zt/U drives
the system to enter a SS phase with nonzero superfluid order
parameter ψe and ψo. With even larger zt/U , the system
finally favors a SF phase over a SS phase with the same
superfluid order parameter and particle density at even and odd
sites.

To appreciate how zt/U affects the phase diagram shown in
Fig. 1, we show a phase diagram spanned by zt/U and μ/U at
K/U = 0.4 in Fig. 7. Evidently, for a MI phase, by increasing
zt/U to some finite value, the system enters into the SF phase;
while for a CDW phase, increasing zt/U first drives the system
into a SS phase, and finally into a SF phase with a sufficiently
large zt/U .

IV. CONCLUSION

In summary, we have carried out a field-theoretical perturba-
tive study on physics in the strong-coupling regime where the
hopping parameter is sufficiently small. We find that the long-
range interaction greatly enhances the thermal fluctuation of
the particle number. In the strong-coupling regime, we identify
four branches of elementary excitation, which correspond to
two types of hole excitation and two types of particle excitation.
We derive a low-energy effective energy functional for the
system in the regime of a small hopping parameter. Finally, we
construct a self-consistent mean-field theory by which we find
that there exists a structural phase transition between different
CDW phases driven by the hopping parameter. Currently, new
research interests [32–35] including supersolidity breaking
translational invariance and relaxation dynamics are being
cultivated along the lines of global collective light-matter
interaction.
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