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We developed a functional integral formulation for the stripe phase of spinor Bose-Einstein condensates
with Rashba spin-orbit coupling. The excitation spectrum is found to exhibit double gapless band
structures, identified to be two Goldstone modes resulting from spontaneously broken internal gauge
symmetry and translational invariance symmetry. The sound velocities display anisotropic behavior with
the lower branch vanishing in the direction perpendicular to the stripe in the x-y plane. At the transition
point between the plane-wave phase and the stripe phase, physical quantities such as fluctuation correction
to the ground-state energy and quantum depletion of the condensates exhibit discontinuity, characteristic
of the first-order phase transition. Despite strong quantum fluctuations induced by Rashba spin-orbit
coupling, we show that the supersolid phase is stable against quantum depletion. Finally, we extend our
formulation to finite temperatures to account for interactions between excitations.
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One of the most intriguing predictions of the quantum
theory is the possibility of supersolidity. It combines
superfluid flow with the long-range spatial periodicity of
solids, two properties that are often mutually exclusive.
This quantum phase requires the breaking of two continu-
ous symmetries: the phase invariance of the superfluid and
the continuous translational invariance to form the crystal
[1,2]. It has been conjectured since 1970 that it might be
possible to create a supersolid in solid 4He [3]. Despite
considerable theoretical and experimental efforts [4–7], the
quest for supersolidity in solid 4He remains elusive.
Over the past decade, physicists have pursued an

alternate route to supersolidity, using the rapidly develop-
ing techniques for engineering ultracold quantum matter
[8–10]. There have been systematic theoretical efforts for
realizing supersolidity in atomic gases with dipolar [11,12]
and soft core, finite-range interactions [13–15]. In 2017,
two research groups from ETH Zurich [16] and from MIT
[17] reported on the first creation of a supersolid with
ultracold quantum gases. The Zurich group prepared Bose-
Einstein condensates inside two optical cavities, which
enhanced atomic interactions until they started to sponta-
neously crystallize and form a solid that maintains the
inherent superfluidity of the Bose-Einstein condensates.
The MIT group created effective one-dimensional spin-
orbit coupling (SOC) to realize a stripe phase with density
modulations verified through Bragg reflection.
So far, spinor Bose-Einstein condensates with one-

dimensional SOC [18,19] and two-dimensional SOC
[20] have been realized in experiments. On the theoretical

side, a great deal of attention has been paid to the ground-
state phase diagram and properties of the plane-wave phase
[21–28]. Apart from beautiful work on the study of the
stripe phase with one-dimensional SOC [29], the explora-
tion of the stripe phase with two-dimensional SOC is still
lacking. In anticipation of immediate experimental rel-
evance, the investigation of a supersolid phase in Bose-
Einstein condensates subject to Rashba SOC has become
an interesting and urgent task. In this work, we shall fill in
this gap by carrying out a comprehensive study.
We consider three-dimensional homogeneous two-

species Bose gases with an isotropic in-plane Rashba
spin-orbit coupling, described by the following grand
canonical Hamiltonian:

H ¼
Z

d3r
X
σ¼↑;↓

�
ψ†
σ

�
−
ℏ2∇2

2m
− μ

�
ψσ þ gðψ†

σψσÞ2
�

þ
Z

d3r½2g↑↓ψ†
↑ψ↑ψ

†
↓ψ↓ þ ðψ†

↑R̂ψ↓ þ H:c:Þ�; ð1Þ

where bosonic operators ψ†
σ and ψσ satisfy commutation

relation ½ψσðrÞ;ψ†
σ0 ðr0Þ� ¼ δσσ0δ

3ðr − r0Þ, μ is the chemical
potential, g and g↑↓ characterizes intraspecies and interspecies
interaction, respectively, and the in-plane spin-orbit coupling
is described by R̂ ¼ λðp̂x − ip̂yÞ, with λ being the coupling
strength. For brevity, we shall take natural units by setting
ℏ ¼ 2m ¼ kB ¼ 1 from now on. We choose gn0 as the basic
energy scale, and then the corresponding momentum scale
is

ffiffiffiffiffiffiffi
gn0

p
, with n0 being the density of the condensates.
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Remarkable properties of this Hamiltonian stem from its
translational invariance. For a noninteracting system, the
lowest-energy states are huge degenerate, lying at the circle
of “Rashba ring” defined by the equation q2x þ q2y ¼
ðλ=2Þ2. When interactions are turned on, the system may
favor a plane-wave phase or a striped phase, depending on
whether g > g↑↓ or g < g↑↓. The plane-wave phase is
characterized by a single condensation momentum, while
the stripe phase involves linear combinations of pairs of plane
waves with opposite momenta, spontaneously breaking
translation invariance. From general arguments, one expects
that the spontaneous breaking of this continuous symmetry is
at the origin of a new gapless Goldstone mode. Without the
loss of generality, we shall assume that the condensation
momentum lies along the x axis withK ¼ Kx̂. We take the
form of the condensate wave function for pseudospin σ as
ϕ0σðrÞ ¼

P
αϕ0ασeið2α−1ÞK·r, where α’s are integers.

By minimizing the ground-state energy with respect
to variational parameters ϕ0ασ and K with the constraint
that the total number density of particles is fixed as n0,
we obtain a mean-field configuration of the condensate
wave function, involving terms with opposite phase

(e�iKx; e�i3Kx; …), responsible for the density modula-
tions. The resultant ground-state density profile is shown
in Fig. 1. It is evident that the density distribution shows
periodic modulation with a spatial period of d ¼ π=K,
indicating the existence of a diagonal long-range order.
We proceed to consider the effects of quantum fluctua-

tions on top of the mean-field ground state. To treat the
problem in a systematic way, we resort to the formulation
of a functional integral. The partition function of the system
can be cast as Z ¼ R

d½ψ†
σ;ψσ�e−S with the action given by

[30] S ¼ R 1=T
0 dτ½R d3r

P
σψ

†
σ∂τψσ þHðψ†

σ;ψσÞ�, where T
is the temperature. In the spirit of the Bogoliubov theory,
we separate the Bose field ψσ into a mean-field part ϕ0σ

and a fluctuating part ϕσ as ψ̂ σ ¼ ϕ0σ þ ϕ̂σ and keep the
action up to the quadratic order, yielding an effective action
Seff ¼ S0 þ Sg ¼

R
dτd3rðL0 þ LgÞ with

L0 ¼
X
σ

½ϕ�
0σð−∇2 − μÞϕ0σ þ gn20σ�

þ 2g↑↓n0↑n0↓ þ ðϕ�
0↑R̂ϕ0↓ þ c:c:Þ; ð2aÞ

Lg ¼
X
σ

½ϕ†
σð∂τ þ ξ̂σÞϕσ þ gðϕ2

0σϕ
†2
σ þH:c:Þ�

þ ðϕ�
↑R̂ϕ↓þH:c:Þ

þ 2g↑↓½ðϕ�
0↑ϕ

�
0↓ϕ↑ϕ↓þϕ�

0↑ϕ0↓ϕ↑ϕ
†
↓ÞþH:c:�: ð2bÞ

In the above, we have used shorthand notations: n0σ ¼
ϕ�
0σϕ0σ and ξ̂σ ¼ −∇2 − μþ 4gn0σ þ 2g↑↓n0σ̄ . Up to this

level, it is a formal manipulation of the Gaussian action Sg
on top of the mean-field action S0. Guided by the form of
the mean-field solution ϕ0σðrÞ, we expand the fluctuating
fields ϕ̂σðrÞ as follows:

�
ϕ↑ðrÞ
ϕ↓ðrÞ

�
¼

X
qα

�
ϕqα↑

ϕqα↓

�
eið2α−1ÞK·reiq·r: ð3Þ

Substituting Eq. (3) into Eq. (2b), we obtain

Sg ¼
X
qασ

ϕ†
qασ½−iwn þ q2

α − μ�ϕqασ þ
X
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ðRqαϕ
†
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þ
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�
ϕ†
qασϕqβσ

X
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ð4gϕ�
0α1σ
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qασϕ

†
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�

þ
X
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ðϕ�
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ϕ0α2↑ϕ
†
qα↑ϕqβ↓ þ H:c:Þ

�
; ð4Þ

where we have defined qα ¼ qþ ð2α − 1ÞK and
Rq ¼ λðqx − iqyÞ. To represent the Gaussian action in a
concise form, we shall define a column vector as
Φq ¼ ðQαϕqα↑ϕqα↓

Q
βϕ

†
−qβ↑ϕ

†
−qβ↓ÞT , where integers α

and β are grouped in ascending order. Then the
Gaussian action is written as Sg ¼ 1

2

P
ðq;iwnÞΦ

†
qG−1Φq−P

qαðξqα=2Þ, where wn’s are the bosonic Matsubara
frequencies and ξqα¼½qþð2α−1ÞK�2þð2gþg↑↓Þn0−μ.
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FIG. 1. Ground-state density profiles n↑=n0 and n↓=n0 in the x
direction where translational invariance is broken. The density
modulation has a spatial period of d ¼ π=K with K=

ffiffiffiffiffiffiffi
gn0

p ¼
0.9905, corresponding to a reciprocal wave vector 2K. The
parameters used here are λ=

ffiffiffiffiffiffiffi
gn0

p ¼ 2 and g↑↓=g ¼ 2. The
chemical potential can be determined via ∂Ω0=∂n0 ¼ 0.
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The matrix elements of the inverse Green’s function
G−1
ασ;α0σ0 ðq; iwnÞ can be conveniently constructed from

Eq. (4) (for details, please see [31]).
The excitation spectrum of this system corresponds

to the poles of the Green’s function G and can be
found by seeking solutions of the secular equation
detG−1ðq; iwnÞ ¼ 0. The excitation predicted by
Hamiltonian (1) has been already calculated in the
plane-wave phase [24,28], where, despite the spinor nature
of the system, it has only one gapless branch with rotonic
structure except at the critical point gc↑↓ ¼ g, where the
system enjoys a SU(2) rotation symmetry in pseudospin
space. We consider excitations propagating in three
orthogonal directions (x, y, and z) and labeled with the
wave vector qx, qy, and qz, respectively. In Fig. 2, we show
the lowest four branches of the excitation spectrum. The
lowest two branches of the excitation spectrum are both
gapless at the zero momentum q ¼ 0 and at the Brillouin
wave vector q ¼ 2K. The peculiar feature which distin-
guishes the stripe phase from other uniform phases is the
occurrence of double gapless bands, resulting from sponta-
neously broken translational invariance symmetry and U(1)
gauge symmetry. As shown in Fig. 2(a), the excitation
along the x direction displays a periodic structure in
momentum space and is fundamentally different from
those in Figs. 2(b) and 2(c). In Fig. 2(b), the lowest branch
shows a free particlelike behavior ω1ð0; δqy; 0Þ ∝ ðδqyÞ2
along the y direction, in stark contrast to the phononlike
behavior ω1ð0; 0; δqzÞ ∝ δqz in the z direction, shown in
Fig. 2(c).
To identify which gapless band corresponds to the

broken symmetry of translational invariance, we shall
examine the behaviors of the sound velocities. The sound
velocities propagating along in the x direction for the two
gapless bands in the long wavelength limit are shown in
Fig. 3. The lower velocity VS1 decreases monotonically as
g↑↓=g decreases, until it vanishes at the transition point

where gc↑↓=g ¼ 1. This suggests that VS1 corresponds to
the Goldstone mode associated with spontaneously broken
continuous translational symmetry. The higher-velocity
VS2 varies continuously as the interaction parameter
g↑↓=g sweeps across the transition point. We judge that
it is the conventional superfluid sound velocity stems from
the U(1) gauge symmetry breaking.
The directional dependence of the two branches of

sound velocities is shown in Fig. 4. Evidently, both
sound velocities enjoy the mirror symmetry of VSðθ;φÞ ¼
VSðπ − θ;φÞ ¼ VSðθ; π þ φÞ. It is remarkable that the
sound velocity of the lower branch VS1 vanishes in the y
direction, in stark contrast to that of the upper branch VS2,
which is always finite in all directions. Close inspection
indicates that the sound velocities are slightly different in
the x and z directions, reflecting an anisotropic nature
induced by Rashba SOC.
The thermodynamic potential is given by Ω ¼

−T lnZ ¼ Ω0 þΩg ¼ TS0 þ ðT=2ÞTr lnG−1 − 1
2

P
qαξqα.

It should be pointed out that the interaction parameters
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FIG. 2. The lowest four branches of the quasiparticle excitation
spectrum in the striped phase along (a) the x direction, (b) the y
direction, and (c) the z direction. There are two branches of
gapless excitation: ω1 (black solid line) and ω2 (red dashed line),
which correspond to two Goldstone modes resulting from
breaking two continuous symmetries. The parameters used here
are λ=

ffiffiffiffiffiffiffi
gn0

p ¼ 2 and g↑↓=g ¼ 2.
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FIG. 4. Directional dependence of the sound velocities VS1 and
VS2: (a) in the x-y plane, (b) in the y-z plane, and (c) in the z-x
plane. Remarkably, the sound velocity of the lower branch VS1
vanishes along the y direction. The parameters used here are
g↑↓=g ¼ 2 and λ=

ffiffiffiffiffiffiffi
gn0

p ¼ 2.

0 1 2 3
0

0.5

1

1.5

2

2.5

FIG. 3. The sound velocities VS1 and VS2 propagating along the
x direction for the lowest two branches of the excitation spectrum
as a function of the interaction parameter g↑↓=g. VS1 stems from
the broken translational invariance and vanishes at the transition
point gc↑↓ ¼ g (marked by vertical red dashed line), where the
supersolid phase gives way to the plane-wave phase. VS2 is the
conventional sound mode associated with spontaneously broken
internal gauge symmetry. The parameters used here are
λ=

ffiffiffiffiffiffiffi
gn0

p ¼ 4.
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g and g↑↓ contained in S0 should be renormalized to ensure
nondivergent behaviors [32–34]. The quantum fluctuation
correction to the ground-state energy ΔEG ¼ Ωg is shown
in Fig. 5. As shown in Fig. 5(a), the sign ofΔEG is reversed
as the interspecies interaction strength g↑↓ is tuned across
the intraspecies interaction strength g. In the plane-wave
phase, ΔEG decreases monotonically as g↑↓ increases; in
the stripe phase, the trend is reversed. The discontinuity of
the shift of the ground-state energy at the transition point
indicates that the phase transition is of first order. As shown
in Fig. 5(b), spin-orbit coupling enhances the correction
to the ground-state energy. At the transition point, we
conclude that the plane-wave phase is favored over the
stripe phase since the correction of the energy is lower,
a direct verification of the “order from disorder”
mechanism [35,36].
The type of symmetry that is broken has fundamental

consequences on the system. Whereas a discrete symmetry
results in robust states with gapped excitations, a continu-
ous symmetry leads to an infinite number of degenerate
ground states that can evolve from one to another without
an energy cost, making the system highly susceptible to
fluctuations. For Bose gases with Rashba SOC, the
quantum fluctuation will be greatly enhanced due to
the increased low-energy density of states [24,37]. For
the system to be stable, we require that the quantum
depletion should be finite. We evaluate the density of
the excited particles due to quantum fluctuation via the
Green’s function: nex ¼

P
ðq;iwnÞ

P
ασ Gασ;ασðq; iwnÞ. By

analyzing the low-energy asymptotic behavior of the
excitation spectrum, we have verified that there is no
infradivergence, which renders that nex is a finite quantity.
The number density of excited particles is shown in Fig. 6.

Clearly, both interspecies coupling and spin-orbit coupling
enhance the quantum depletion. As seen in Fig. 6(a), at the
transition point g↑↓ ¼ g, nex is discontinuous, characteristic
of the first-order phase transition.
So far, we have concentrated only on the zero-

temperature properties. Finite-temperature effects will have
vital effects on our system due to the increased low-energy
density of states due to SOC [38,39]. However, the
celebrated Bogoliubov theory is strictly valid only at a
zero temperature. To extend it to a finite temperature where
excitations proliferate, one needs to take account of
interactions between excitations. At a finite temperature,
the Hartree-Fock-Bogoliubov approximation gives a
gapped spectrum [40], violating the Hugenholz-Pines
theorem [41] and the Goldstone theorem. In this work,
we shall undertake the Popov approximation [42], which
yields a gapless spectrum and provides a good description
of Bose gases at finite temperatures. Under the Popov
approximation, where anomalous averages are neglected,
the terms with three and four fluctuating fields in the action
are approximated as follows [33]: ϕ†

σϕσϕσ ≈ 2hϕ†
σϕσiϕσ ,

ðϕ†
σϕσÞ2≈4hϕ†

σϕσiϕ†
σϕσ, and ϕ†

↑ϕ↑ϕ
†
↓ϕ↓ ≈ hϕ†

↑ϕ↑iϕ†
↓ϕ↓þ

hϕ†
↓ϕ↓iϕ†

↑ϕ↑. The shift of the chemical potential can be
obtained by requiring that the linear term in fluctuating
fields vanishes: μðTÞ ¼ μð0Þ þ ð2gþ g↑↓Þnex, with nex ¼P

σhϕ†
σϕσi being the density excited out of the conden-

sates. The new Gaussian action remains the same form as
the original one, except that now n0 becomes temperature
dependent. In this way, both n0ðTÞ and nexðTÞ can be
determined self-consistently by fixing the total den-
sity n ¼ n0 þ nex.
In summary, we have shown that the supersolid phase

exists in ultracold atomic condensates with Rashba spin-
orbit coupling. The density distribution shows a character-
istic periodic modulation with a spatial period spontaneously
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FIG. 5. Quantum fluctuation correction to the ground-state
energy ΔEG [in units of Vðgn0Þ5=2] as a function of (a) the
interaction parameter g↑↓=g with λ=

ffiffiffiffiffiffiffi
gn0

p ¼ 2 and (b) the spin-
orbit coupling strength λ=

ffiffiffiffiffiffiffi
gn0

p
with g↑↓=g ¼ 2. At the transition

point gc↑↓, the shift of the ground-state energy is discontinuous,
indicating that the transition is a first-order one involving
different order parameter symmetry. At the transition point,
the plane-wave phase is preferred, as its energy is lower than
that of the supersolid phase.
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FIG. 6. The number density of excited particles nex [in units
of ðgn0Þ3=2] due to quantum fluctuation as a function of (a) the
interaction parameter g↑↓=g and (b) the spin-orbit coupling
strength λ=

ffiffiffiffiffiffiffi
gn0

p
. The phase transition point is marked with a

vertical red dashed line. The parameters used here are
λ=

ffiffiffiffiffiffiffi
gn0

p ¼ 2.
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chosen through translational symmetry breaking. Its elemen-
tary excitation propagating along the direction perpendicular
to the stripe features double gapless bands. A quantum
fluctuation correction to the ground-state energy that shows
discontinuity at the phase transition suggests that it is a first-
order one. Both interspecies coupling and spin-orbit cou-
pling enhance the quantum depletion of condensates. Our
predictions bear consequences for experimental observation.
The excitation spectrum and sound velocity can be probed
by Bragg spectroscopy [43]. An interesting extension to our
work would be to map out the finite temperature phase
diagram, which can be accessed in experiments [44]. The
experimental verification of our work is expected to con-
tribute to a better understanding of supersolidity and
emerging phenomena associated with the breaking of
continuous symmetries.
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