Growth and optical properties of ZnO nanorod arrays on Al-doped ZnO transparent conductive film
Suanzhi Lin,Hailong Hu,Weifeng Zheng,Yan QuandFachun Lai
Nanoscale Research Letters2013,8:158 doi:10.1186/1556-276X-8-158
Published: 8 April 2013
Abstract (provisional)
ZnO nanorod arrays (NRAs) on transparent conductive oxide (TCO) films have been grown by a solution-free, catalyst-free, vapor-phase synthesis method at 600[degree sign]C. TCO films, Al-doped ZnO films, were deposited on quartz substrates by magnetron sputtering. In order to study the effect of the growth duration on the morphological and optical properties of NRAs, the growth duration was changed from 3 to 12 min. The results show that the electrical performance of the TCO films does not degrade after the growth of NRAs and the nanorods are highly crystalline. As the growth duration increases from 3 to 8 min, the diffuse transmittance of the samples decreases, while the total transmittance and UV emission enhance. Two possible nanorod self-attraction models were proposed to interpret the phenomena in the sample with 9-min growth duration. The sample with 8-min growth duration has the highest total transmittance of 87.0%, proper density about 75 mum-2, diameter about 26 nm, and length about 500 nm, indicating that it can be used in hybrid solar cells.