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Effect of Gd doping on the magnetism and
work function of Fe1−xGdx/Fe (001)∗
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The magnetism and work function Φ of Fe1−xGdx/Fe (001) films have been investigated using first-principles methods
based on the density functional theory. The calculated results reveal that Gd doping on the Fe (001) surface would greatly
affect the geometrical structure of the system. The restruction of the surface atoms leads to the transition of magnetic
coupling between Gd and Fe atoms from ferromagnetic (FM) for 0.5 ≤ x ≤ 0.75 to antiferromagnetic (AFM) for x = 1.0.
For Fe1−xGdx/Fe (001) (x = 0.25, 0.5, 0.75, 1.0), the charge transfer from Gd to Fe leads to a positive dipole formed on the
surface, which is responsible for the decrease of the work function. Moreover, it is found that the magnetic moments of Fe
and Gd on the surface layer can be strongly influenced by Gd doping. The changes of the work function and magnetism for
Fe1−xGdx/Fe (001) can be explained by the electron transfer, the magnetic coupling interaction between Gd and Fe atoms,
and the complex surface restruction. Our work strongly suggests that the doping of the metal with a low work function is a
promising way for modulating the work function of the magnetic metal gate.

Keywords: first-principles method, doping, magnetism, work function
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1. Introduction
Magnetic tunnel junctions have become important com-

ponents appearing in magnetic random-access memory, the
read heads of magnetic disks, and semiconductor-based spin
devices. Inserting a tunnel barrier has become a key method to
achieve the spin injection. However, spin injection into Si is
still elusive because the Schottky barrier formation leads to a
huge conductivity mismatch of the ferromagnetic (FM) tunnel
contact and Si,[1] which is detrimental to spin transport and
spin injection. Moreover, it cannot be solved by adjusting the
tunnel barrier thickness.[2,3] An accepted route to overcome
the electrical mismatch and prevent interfacial chemical reac-
tions is to employ the tunneling of spins through an oxide bar-
rier such as Al2O3.[4] Min et al. presented a radically differ-
ent approach for spin-tunneling resistance control using low-
work-function ferromagnet Gd (Φ = 3.1 eV) inserted at the
FM/tunnel barrier interface.[5] It was found that in this way,
the resistance–area (RA) product of FM/Al2O3/Si contacts
can be tuned over eight orders of magnitude, while simulta-
neously maintaining a reasonable tunnel spin polarization. It
was also suggested that the lowering effective work function
of the FM by inserting Gd is related to the structure and the
magnetism at the Fe/Gd interface. Recently, the effect of a
ferromagnetic Gd marker layer on the effective work func-
tion of Fe in a Fe/Gd/Al2O3/Si stack has been systematically
investigated.[6] When the Gd marker thickness was changed
from 0 nm to 2.7 nm, the measured effective work function of

Fe at the Fe/Gd/Al2O3 interface was reduced from 4.5 eV to
3.7 eV. Moreover, from 57Fe conversion electron Mossbauer
spectroscopy, a certain degree of Fe–Gd mixing at the inter-
face was observed. It was also suggested that, with increasing
Gd interlayer thicknesses, the lowering effective work func-
tion of Fe is related to the changes of the structure and mag-
netism in the Fe/Gd interface. The work function can be tuned
by several methods. For example, the alloying modulation of
the work functions for binary alloys has been studied in ex-
periments and theories.[7–11] Xu et al. have revealed that the
surface alloy composition and the surface orientation can af-
fect the work functions of MoTa and NiPt systems in a dis-
tinctive fashion.[10,11] Also, Park et al. have found that the
submonolayer of an overlying metal can significantly affect
the work functions of NiAl and PtAl systems.[12] However,
up to now, the impact of Gd doping on the work function of
the Fe1−xGdx/Fe surface has not been studied well. In this
paper, based on first principles calculation, we investigate the
effect of Gd doping on the magnetism and work function of
Fe1−xGdx/Fe (001). The calculated results reveal that the ge-
ometrical structure of Fe(001) can be greatly affected by Gd
doping. The surface restruction of atoms leads to the transition
of magnetic coupling between Gd atoms from ferromagnetic
for 0.5 ≤ x ≤ 0.75 to antiferromagnetic (AFM) for x = 1.0.
Moreover, the work function of Fe1−xGdx/Fe (001) can be re-
duced by Gd doping, and the modulated range reaches 1.12 eV
(from 3.86 eV to 2.74 eV).
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2. Method
The work functions of the Fe1−xGdx/Fe (001) surfaces

were calculated using a first principles method based on
the density-functional theory (DFT).[13] All calculations were
carried out using the Vienna ab initio simulation package,
employing the generalized gradient approximation (GGA)
of Perdew–Burke–Ernzerhof for the exchange–correlation
function.[10,14–22] As Gd is a typical heavy metal, the spin-
orbit coupling should be considered. The moderate correla-
tion of 3d electrons and the strong correlation of f electrons in
Gd require adding an on-site Coulomb interaction U . In the
GGA+U method,[23] the parameters U and J represent the on-
site Coulomb interaction energy (Hubbard U) and the atomic-
orbital intra-exchange energy (Hund’s coupling parameter),
respectively. In the calculation, the optimal values of Ueff were
determined by comparing the calculated magnetic moments
with the experimental and other calculated values.[24–26] Fi-
nally, the values of Ueff for Fe and Gd were chosen as 0.2 eV
and 6.9 eV, respectively. All Fe1−xGdx/Fe (001) surfaces were
modeled by a nine-layer Gd/Fe slab with a (2×2) unit cell.
The supercell contained 36 atoms, where there were 4 atoms
in each layer, and the periodic boundary conditions were ap-
plied with 15 Å of a vacuum between the slabs. Brillouin-zone
integrations had been performed via the Methfessel–Paxton
technique[27] on a 5× 5× 1 k mesh. A cutoff energy of
300 eV was used for the plane-wave expansion of the electron

wave function. These parameters ensured a convergence bet-
ter than 1 meV for the total energy. The atomic coordinates in
the supercell were fully relaxed using the conjugate-gradient
algorithm[28] until the maximum Hellmann Feynman force on
a single atom was less than 0.02 eV/Å. After relaxation, the
work functions were calculated as the differences between the
electrostatic potential in the middle of the vacuum region and
the metal Fermi energy.[29]

Our convergence test indicated that a slab consisting of a
minimum of four metal layers is required. Subsequent calcula-
tions of the work functions of the Fe1−xGdx/Fe (001) surfaces
were performed using slabs of nine layers and a 2×2 surface
unit cell with the four bottom layers being frozen. In order to
verify our computational approach, we calculated the lattice
constants and magnetic moments M of bulk Fe and Gd, the
magnetic moments of the topmost layer atoms Msur, and the
work functions Φ for Fe(001) and Gd(001). The calculated
results and the corresponding experimental data are listed in
Table 1. From the Table, it is found clearly that the calculated
lattice constants, magnetic moments, and work functions are
consistent with those in experiments and other calculated data
from Refs. [30]–[39]. Moreover, our calculated work func-
tion of 3.86 eV is slightly less than the experimental value of
4.24 eV, which should be attributed to the strained effect in
real films.[35]

Table 1. Lattice constants and magnetic moments M for bulk Fe and Gd (in GGA and GGA+U); magnetic moments of the topmost
layer atoms Msur and the work functions Φ for Fe (001) and Gd(001).

Lattice constant/Å M/µB Msur/µB Φ /eV

this work other calculation Expt.
this work

Expt.
this work other

this work
other

Expt.
GGA GGA+U GGA+U calculation calculation

Fe 2.830 2.830a) 2,703b) 2.07 2.20 2.20c) 2.98 2.98d) 3.86 3.86e) 4.24f)

Gd a = 3.636, c = 5.783 a = 3.622, c = 5.74g) 7.50 7.63 7.63h) 7.73 7.77i) 2.9 3.1j)

a)Ref. [30]; b)Ref. [31], experimental lattice constant is extrapolated to T = 0 K; c)Ref. [32]; d)Ref. [33]; e)Ref. [34]; f)Ref. [35]; g)Ref. [36]; h)Ref. [37];
i)Ref. [38]; j)Ref. [39]

3. Results and discussion

To investigate the effect of Gd doping on the work func-
tion and magnetism of Fe1−xGdx/Fe(001), different composi-
tions of the surface layer for the Fe1−xGdx/Fe (001) system
were constructed by varying the ratio of the four Gd and Fe
atoms. Four doping contents with x = 0.25, 0.50, 0.75, 1.00
were considered. The calculated results indicated that, the Gd
doping hardly influences the x and y positions of Gd and Fe
atoms. In the x–y plane, the lattice constants for x = 0.00,
0.25, 0.50, 0.75, 1.00 stay as (2.830±0.001) Å. However,
the Gd doping has a great effect on their z positions. Fig-
ures 1(a)–1(e) show the side views of the atom arrangements
for Fe1−xGdx/Fe (001) films with x = 0.00, 0.25, 0.50, 0.75,

1.00, respectively. For x= 0.25, the Gd atom is higher than the
other three Fe atoms on the surface layer. For x = 0.50, both
catercorner Gd atoms move outward away from the surface,
and the remaining two Fe atoms are lower than the Gd atoms.
For x = 0.75, both catercorner Gd atoms move outward away
from the surface, and both the remaining Fe and Gd atoms stay
lower. For x = 1.00, four Gd atoms all move outward away
from the surface, while both catercorner Gd atoms are higher
than the remaining ones. Especially, for x≤ 0.75, the coupling
between Gd and Fe atoms is ferromagnetic. However, for
x = 1.00, there exists antiferromagnetic coupling between Gd
and Fe atoms, which is similar to the antiferromagnetic cou-
pling between Mn and Fe for the Mn/Fe (001) film.[30] These
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results should be due to the changes of the atom arrangements
aroused by the Gd doping. Figure 2 shows the exchange cou-
pling constant (J) between Gd and Fe atoms as a function of
the Gd–Fe distance. Here, J = EAFM–EFM, where EAFM and
EFM are the total energies of the AFM and the FM states, re-
spectively. A positive J means ferromagnetic coupling, while
a negative J indicates antiferromagnetic coupling. From the
figure, it is observed that the magnetic coupling between Fe
and Gd atoms is sensitive to the inter-atomic distance. Es-
pecially, when d < 3.80 Å, J is positive; when d > 3.80 Å,
it becomes negative. Therefore, there exists a critical Gd–Fe
distance for the transition from ferromagnetic coupling to anti-

ferromagnetic coupling. As seen in Fig. 1, the distances of the

nearest neighbor Gd and Fe atoms for x ≤ 0.75 are all less

than 3.80 Å. Thus, the magnetic coupling between Gd and

Fe atoms is FM with x ≤ 0.75. However, for x = 1.0, there

exist two high-position Gd atoms (spin down) and two low-

position Gd atoms (spin up). For the high-position Gd atoms,

the distance (4.587 Å) between Gd and Fe atoms is larger than

3.80 Å, which responds to the antiferromagnetic coupling. For

the low-position Gd atoms, the distance (2.749 Å) between Gd

and Fe atoms is less than 3.80 Å, which responds to the ferro-

magnetic coupling.
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Fig. 1. (color online) Side views of the atom arrangements for the top four layers of Fe1−xGdx/Fe (001): (a) x = 0.0, (b) x = 0.25,
(c) x = 0.5, (d) x = 0.75, (e) x = 1.0.
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Fig. 2. Exchange coupling constant J between Gd and Fe atoms as a
function of the Gd–Fe distance.

Figure 3 shows the Fermi energy and the work function
as a function of Gd doping content x on the surface layer for
Fe(001). From the figure, it can be found that for x≤ 0.5, with

increasing x, the Fermi energy is increased and the work func-
tion is decreased except for x= 0.5. Table 2 lists the calculated

0.8

1.2

1.6

2.0

0 0.25 0.50 0.75 1.00

2.5

3.0

3.5

4.0

F
er

m
i 
en

er
g
y
/
eV

W
o
rk

 f
u
n
ct

io
n
/
e
V

Surface coverage of Gd atoms 

(a)

(b)

Fig. 3. (a) Fermi energy EF and (b) work function Φ as a function of
Gd doping content x on the surface layer for Fe (001).
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Fermi energies EF, work functions Φ , and magnetic moments
M of the topmost three layer atoms for GdxFe1−x/Fe(001) sur-
faces. As shown in Table 2, the work functions of Fe (001)
can be reduced by Gd doping, which is consistent with the
experimental results in Ref. [6]. It is believed that the effect
of a layer of adsorbate on the work function of a surface is
governed by the electronegativity of the adsorbate.[40–43] The
electronegativity of Gd (1.21) is less than that of Fe (1.83),

which results in an excess of positive charge on the surface
layer and negative charge below the surface layer. This leads
to a positive dipole, which gives rise to the reduction of the
work function. Moreover, with the increase of the Gd doping
content, the Fermi energy EF is elevated due to the electron
transfer from Gd to Fe. At the same time, the change of the
Fermi energy EF will also give rise to one of the magnetic mo-
ments of Gd and Fe atoms.

Table 2. The calculated Fermi energies EF, work functions Φ , and magnetic moments M of the topmost three layer atoms for each
GdxFe1−x/Fe(001) film.

x 0.0 0.25 0.5 0.75 1.0

S
M(Gd)/µB 5.015

6.74, 6.17 2.31, 7.31, 7.31 –7.65, –7.65, 6.96, 6.96
(M̄ = 6.46) (M̄ = 5.64) (M̄ = 7.30)

M(Fe)/µB 2.98
2.56, 2.56, 2.97

2.10, 2.10 1.90
(M̄ = 2.70)

S-1 M(Fe)/µB 2.27 2.24 2.21 2.22 2.38
S-2 M(Fe)/µB 2.37 2.36 2.27 2.30 2.35

EF/eV 1.01 1.32 1.47 1.67 1.75
Φ /eV 3.86 3.14 2.74 2.94 2.86

Figure 4 shows the schematic density of states N(E) of
ferromagnetic Fe–Gd metal alloy occurring in the presence of
an effective magnetic field Heff (Heff = H +HW), where H is
the external magnetic field, and HW is the Weiss molecular
field that is proportional to the exchange coupling constants.
There is an energy shift of −µBHeff (+µBHeff) for electrons
with magnetic moments parallel (antiparallel) to the applied
magnetic field. The electrons which flip their magnetic mo-
ments from +µB to −µB are those contained in the energy in-
terval around the Fermi level, their number is donated by ∆N.
Then, we have[22]

∆N = [N↓(EF)+N↑(EF)]µBHeff

×{1− [N↓(EF)−N↑(EF)]/[N↓(EF)+N↑(EF)]}, (1)

and the change of the Fermi level is given by

∆EF = [N↓(EF)−N↑(EF)]µBHeff/[N↓(EF)+N↑(EF)], (2)

where N↓(EF) and N↑(EF) are the density-of-states at the Fermi
level for down and up spins, respectively. Moreover, when
the electrons transfer from the surface magnetic atoms to the
substrate atoms, the numbers of electrons with up and down
spins filling in near the Fermi level are different. It is found
that the added electrons in Fig. 4 with up spins are more than
those with down spins. Therefore, with increasing the num-
ber of the transfer electrons, the net magnetic moment should
be increased and the Fermi level should be ascended. As Fe
is replaced by Gd, the electrons of Gd will transfer into the
Fermi surface of Fe. As a result, the doping of Gd will give
rise to the lifting of the Fermi energy level, the decrease of the
magnetic moment of Gd, and the increase of the Fe moment.

However, compared to the results in Table 2, the Fe moments
are instead reduced by the Gd doping, which means that there
exist other factors influencing the Fe magnetic moment except
for the electron transfer. The complex influence roles on the
magnetic moment will be discussed in the following text.

N↼E↽

GdFe

N↼E↽

E E

Fig. 4. Schematic density of states N(E) of ferromagnetic Gd and Fe
metals.

The electron transfer is an important factor affecting the
work function. Figure 5 shows the contour plot of the dif-
ference of the electron density for Fe1−xGdx/Fe (001) with
x = 0.25, 0.5, 0.75. From the figure, it can be clearly seen
that there exist strong Gd–Fe and Gd–Gd interactions for each
Fe1−xGdx/Fe (001) film. At the same time, for Fe1−xGdx/Fe
(001) (x = 0.25, 0.50, 0.75, 1.00), the charge transfer from Gd
to Fe leads to a positive dipole formed on the surface, which is
responsible for the decrease of the work function. The change
of the work function is mainly determined by the change of
the Fermi level. However, the change of the surface structure
can also influence the change of the work function. As shown
in Fig. 1, the distance dFe−Gd between the Fe layer and the Gd
layer increases from 0.031 Å to 0.081 Å with the increase of

056301-4



Chin. Phys. B Vol. 23, No. 5 (2014) 056301

Gd doping content x, except for x = 0.5 with 0.026 Å. The
Gd–Fe interactions for x = 0.5 with least dFe−Gd (0.026 Å)
are stronger than those for x = 0.25 and 0.75, which leads to
the highest surface positive dipole. It was reported that the
change of work function ∆Φ is proportional to the surface
dipole.[37] Therefore, the unusual reduction of the work func-
tion of Fe0.5Gd0.5/Fe (001) should be attributed to less dFe−Gd.

From Table 2, it is found that the magnetic moments of
Fe and Gd on the surface layer can be strongly influenced by
Gd doping. As seen in Table 1, for pure Fe and Gd atoms,
their surface magnetic moments are 2.98µB and 7.73µB, re-
spectively. On the Fe(001) surface, as one Fe atom is replaced
by one Gd atom, on the one hand, the electrons of the Gd atom
will be transfered into the Fermi surface of Fe, which will give
rise to the decrease of the Gd magnetic moment and the in-
crease of the Fe moment; on the other hand, the coupling inter-
action between Gd and Fe atoms has the Weiss molecular field
HW acting on the Fe atom reduced, which leads to the decrease
of the Fe magnetic moment. Therefore, the combined actions
of both factors above make the Gd and Fe magnetic moments

decrease. Moreover, with increasing the Gd doping content,
the average moment of the Fe atom on the surface layer is fur-
ther reduced. For a low Gd doping content (x ≤ 0.25), the
moment of Fe on the surface layer is higher than that for bulk
Fe, which is attributed to the surface effect.[43–46] While for
x > 0.25, the strong Gd–Fe interaction leads to the decrease
of the moment of Fe, which is consistent with the results in
Ref. [47]. However, the changes of Gd magnetic moments are
more complex. For all GdxFe1−x/Fe (001) films, the average
moments of Gd are lower than its surface magnetic moments
(7.73µB), which is due to the coupling interaction between Gd
and Fe. When x ≥ 0.5, there exist the pairing Gd atoms mov-
ing outward away from the surface, as seen in Fig. 1. The
magnetic moments of the pairing Gd atoms above are near
the surface magnetic moments of Gd, which is attributed to a
strong Gd–Gd interaction and a weak Gd–Fe interaction. For
x = 0.75, there are two pairing Gd atoms at higher levels and
one Gd atom at lower levels. Moreover, the Gd atom at lower
levels has a small magnetic moment with M = 2.31µB due to
the strong Gd–Fe coupling.

Gd Gd
Gd Gd

Gd

Gd

Fe
Fe

Fe

(a) (b) (c)

top
view

S(GdxFex↩)

S 1(Fe)

S 2(Fe)

side
view

Fig. 5. (color online) Contour plot of the difference of the electron density (in e/Å 3) for (a) x = 0.25, (b) x = 0.5, and (c) x = 0.75.
Solid and dashed lines are used to label contours whose values are larger and less than zero for the 2D maps of the top view, while in
3D maps of the side view for the top three layers, positive and negative values are shown by yellow and blue, respectively.

4. Conclusion

In conclusion, we have investigated the effects of the Gd
doping on the magnetism and work function of Fe1−xGdx/Fe
(001). It is found that the Gd doping gives rise to the restruc-
ture of the surface atoms of Fe1−xGdx/Fe (001), which leads to
the transition of magnetic coupling between Gd and Fe atoms
from FM with x≤ 0.75 to mixed AFM and FM with x = 1.00.
As the Fe atoms are replaced by the Gd atoms, the charge

transfer from Gd to Fe appears. The electronegativity of Gd
is less than that of Fe, which leads to a positive dipole. This is
responsible for the decrease of the work function with increas-
ing Gd doping content. Moreover, it is found that the electron
transfer, Gd–Gd and Gd–Fe couplings do jointly determine the
changes of the magnetic moments of Fe and Gd on the surface
layer. Of course, after Gd doping, the complex surface restruc-
ture should be one of the main origins of the various changes
of Gd and Fe magnetic moments.
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