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Abstract: We systematically study the influence of amplitude modulation on the steady-state
bosonic squeezing and entanglement in a dissipative three-mode optomechanical system, where
a vibrational mode of the membrane is coupled to the left and right cavity modes via the
radiation pressure. Numerical simulation results show that the steady-state bosonic squeezing and
entanglement can be significantly enhanced by periodically modulated external laser driving either
or both ends of the cavity. Remarkably, the fact that as long as one periodically modulated external
laser driving either end of the cavities is sufficient to enhance the squeezing and entanglement
is convenient for actual experiment, whose cost is that required modulation period number for
achieving system stability is more. In addition, we numerically confirm the analytical prediction
for optimal modulation frequency and discuss the corresponding physical mechanism.
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1. Introduction

Driven by a variety of different goals and promising prospects, cavity optomechanics, a field at
the intersection of nanophysics and quantum optics, has developed over the past few years [1–3].
It has been known that nonclassical states of macroscopic mechanical resonators, especially
the squeezed and entangled states, play a key role in test of the fundamental principles of
quantum mechanics, quantum information processing, and ultrahigh-precision measurements.
Many researches have been investigated on quantum squeezing and entanglement generation
in cavity optomechanical interfaces. Normally, one can simply use radiation pressure forces or
combine continuous quantum measurements and feedback to obtain stationary squeezing [4–6]
and stationary entanglement [7,8] in a two-mode optomechanical system. In order to increase the
richness of the research, the three-mode optomechanical setting was introduced and has been
realized experimentally recently [9–11]. Several theoretical schemes for generating quantum
squeezing and entanglement in the three-mode optomechanical system have been proposed based
on the basic idea that the auxiliary mode mediates an effective two-mode squeezing interaction
between the two target modes [12–16]. However, the schemes are generally restricted to the
requirement of stability so that they yield at best a relatively small amount of squeezing and
entanglement.
Resent studies show that large degrees of squeezing and entanglement can be achieved by

mildly modulating the amplitude of the driving field [17–22] or combining with dissipation
mechanism [23,24], where no feedback is needed. Moreover, the modulation-assisted driving
can give rise to interesting and rich quantum dynamics [25, 26]. Farace and Giovannetti [27]
further investigated this modulation regime and showed that simultaneous modulations of the
mechanical frequency and input laser intensity can either enhance or weaken the desired quantum
effects. Newly, the robust entanglement is generated by modulating the coupling strength between
two mechanical oscillators [28, 29]. Besides, the modulation-induced mechanical parametric
amplification effectively enhances the resonant optomechanical interaction and leads to single-
photon strong-coupling [30]. Remarkably, several works [31–37] reveal that optimizing relative
ratio of optomechanical couplings, rather than simply increasing their magnitudes, is essential
for achieving strong steady-state squeezing and entanglement via dissipation mechanism. These
schemes exploit the Bogoliubov-mode-based method [38] instead of the Sφrensen-Mφlmer
approach [39]. Another promising means for generating strong entanglement or squeezing is the
phonon-mediated four-wave mixing process [40]. Although the physical explanations for these
schemes are not quite the same, a common feature is to induce an effective engineered reservoir
by driving the optomechanical systems with proper blue and red detuned lasers [38–42].

In this work, combination of the modulation and the dissipation is considered. We expand the
optomechanical model in [17] to three-mode optomechanical system, which is similar to that
in [43] and [44] except being driven by periodic modulation field. A single-cavity optomechanical
system usually requires an external laser to drive the mechanical resonator out of its zero steady
state at equilibrium position. For the system considered here, an external laser being applied
to either end of the cavity is sufficient to drive the vibrating membrane. Numerical simulation
results show that the squeezing and entanglement can be enhanced with one-end or two-end
periodically modulated external laser. The time required for the two-end modulation when the
system achieves a stable state is shorter than that for the one-end modulation, but the one-end
modulation reduces the difficulty of the experiment. What is more, with the help of the third
mode acted as an engineered reservoir, dissipation mechanism is explored. Compared to the
previous studies of three-mode modulated optomechanics [21, 22, 24], more general modulations
of quantum dynamics are discussed here.

In what follows, we give a detailed description of our model and obtain the linearized dynamical
equations for the system in Sec. II. In Sec. III, analytical solutions for mean values in the cases
of symmetric and asymmetric modulation are obtained in a perturbative way. Then We analyze
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Fig. 1. Schematic diagram of the optomechanical system.

in detail the characters of the mean values, where the numerical results agree well with the
analytical results. In Sec. IV, the mechanisms of squeezing and entanglement via combinations
of the periodic amplitude modulation and the dissipation regime are discussed by assuming a
simple but justifiable form of the effective coupling. Finally, conclusions are presented in Sec. V.

2. Theoretical model

The considered system is depicted in Fig. 1. A dielectric membrane as a mechanical oscillator
separates an optical cavity into two cavities and constructs a “membrane-in-the-middle” configu-
ration, which has been theoretically studied [20,45–53] and experimentally implemented [54–62].
The mechanical oscillator with frequency ωm is simultaneously coupled to the left and right
cavity modes via the radiation pressure difference between the two cavities, where tunneling
of photons through the membrane is allowed. The two cavity modes with frequency ωcL and
ωcR are respectively driven by external lasers with periodically modulated amplitudes EL (t)
and ER (t). In the rotating frame with respect to laser frequencies ωL and ωR, the corresponding
Hamiltonian reads (~ = 1)

H =
∑
j=L,R
[∆j A

†
j Aj + iEj(t)A†j − iE∗j (t)Aj] +

ωm
2
(P2 +Q2) (1)

+g(A†L AL − A†R AR)Q + J(AL A†R + A†L AR).

Here, ∆j = ωcj − ωj denotes the jth cavity mode detuning, A†j and Aj represent the creation
and annihilation operators of the jth cavity mode, Q and P are the dimensionless position and
momentum operators of the mechanical mode with the standard canonical commutation relation
[Q, P] = i, J expresses the cavity-cavity coupling strength which is in the regime J � ωcL, ωcR,
and g signifies the phonon-photon coupling coefficient. The time-dependent amplitude Ej(t) is a
period function with the period τ, i.e., Ej(t + τ) = Ej(t).

Taken into account the cavity leakage and membrane damping, the dissipative dynamics of the
system is described by the following nonlinear quantum Langevin equations (QLEs)

ÛQ =ωmP, (2a)
ÛP = − ωmQ − g(A†L AL − A†R AR) − γmP + ξ(t), (2b)
ÛAL = − (κ + i∆L)AL − igALQ − iJ AR + EL(t) +

√
2κain

L (t), (2c)
ÛAR = − (κ + i∆R)AR + igARQ − iJ AL + ER(t) +

√
2κain

R (t), (2d)

where κ and γm are severally the leakage rate of the cavities and the mechanical damping rate.
The zero-mean fluctuation terms ain

j (t) obey the correlation relations [63]
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〈
ain
j (t)a

in†
j (t

′)
〉
= (na + 1)δ(t − t ′), (3a)〈

ain†
j (t)a

in
j (t ′)

〉
= naδ(t − t ′), (3b)

where na = [exp(~ωcj
/

kBT) − 1]−1 is the mean bath photon number at the environmental
temperature T . The correlation function of zero-mean Brownian motion noise operator ξ(t) in
the case of the large mechanical quality factor Q = ωm/γm � 1 can be approximately described
by the Markovian process and satisfies

〈ξ(t)ξ(t ′) + ξ(t ′)ξ(t)〉/2 = γm(2nm + 1)δ(t − t ′), (4)

where nm = [exp(~ωm/kBT) − 1]−1 is the mean thermal phonon number at the environmental
temperature T .
In the presence of strong external driving fields, we can rewrite each Heisenberg operator

as O = 〈O(t)〉 + o (O = Q, P, Aj), where o is quantum fluctuation operator around classical
c-number mean value 〈O(t)〉. After applying standard linearization technique to the Eq. (2), we
obtain the equations for the mean values

Û〈Q〉 =ωm〈P〉, (5a)
Û〈P〉 = − ωm〈Q〉 − γm〈P〉 − g(〈AL〉∗〈AL〉 − 〈AR〉∗〈AR〉), (5b)
Û〈AL〉 = − (κ + i∆L)〈AL〉 − ig〈AL〉〈Q〉 − iJ〈AR〉 + EL(t), (5c)
Û〈AR〉 = − (κ + i∆R)〈AR〉+ig〈AR〉〈Q〉 − iJ〈AL〉 + ER(t), (5d)

the linearized QLEs for the quantum fluctuations

Ûq =ωmp, (6a)
Ûp = − ωmq − γmp − g(〈AL〉∗aL − 〈AR〉∗aR + h.c.) + ξ(t), (6b)

ÛaL = − (κ + i∆L)aL − ig(〈AL〉 q+ 〈Q〉 aL) − iJaR +
√

2κain
L (t), (6c)

ÛaR = − (κ + i∆R)aR + ig(〈AR〉 q+ 〈Q〉 aR) − iJaL +
√

2κain
R (t), (6d)

and the corresponding linearized system Hamiltonian

Hlin = (∆L + g〈Q〉)a†LaL + (∆R − g〈Q〉)a†RaR +
ωm
2
× (p2 + q2) + J(a†LaR + a†RaL)

+g(〈AL〉∗aL + 〈AL〉a†L − 〈AR〉∗aR − 〈AR〉a†R)q. (7)

3. The characters of the mean values

It is difficult to find exact solutions of the mean values in Eq. (5) in general. But when the system is
far away from optomechanical instabilities and multistabilities [64], the optomechanical coupling
can be treated in a perturbative way. More specifically, approximately analytical solutions of the
mean values can be found by expanding them in power series of the coupling costant g. Besides,
it is justifiable that stable solution has the same periodicity τ as the implemented modulation
field Ej(t). Hence, we can perform double expansions for the mean values 〈O(t)〉 in power series
of g and Fourier series, i.e.,

〈O(t)〉 =
∞∑
l=0

∞∑
n=−∞

On,leinΩtgl, (8)
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where Ω = 2π/τ is the fundamental modulation frequency. Similarly, Fourier series for the
periodic driving amplitudes can be written as

EL(t) =
∞∑

n=−∞
EL
n einΩt, (9a)

ER(t) =
∞∑

n=−∞
ER
n einΩt . (9b)

After directly substituting Eqs. (8) and (9) into Eq. (5), the coefficients On,l are completely
determined by the following relations

Pn,0 = Qn,0 = 0, (10a)

AL
n,0 =

iJER
n − (κ + i∆R + inΩ)EL

n

−J2 − (κ + i∆R + inΩ)(κ + i∆L + inΩ)
, (10b)

AR
n,0 =

iJEL
n − (κ + i∆L + inΩ)ER

n

−J2 − (κ + i∆R + inΩ)(κ + i∆L + inΩ)
(10c)

corresponding to the 0-order perturbation with respect to g, and

Pn,l =
inΩ
ωm

Qn,l, (11a)

Qn,l = − ωm(
l−1∑
k=0

∞∑
m=−∞

AL∗
m,k

AL
n+m,l−k−1

ω2
m + iγmnΩ − (nΩ)2

−
l−1∑
k=0

∞∑
m=−∞

AR∗
m,k

AR
n+m,l−k−1

ω2
m + iγmnΩ − (nΩ)2

), (11b)

AL
n,l = − i

l−1∑
k=0

∞∑
m=−∞

AL
m,k

Qn−m,l−k−1 + J AR
n,l

κ + i∆L + inΩ
, (11c)

AR
n,l =i

l−1∑
k=0

∞∑
m=−∞

AR
m,k

Qn−m,l−k−1 − J AL
n,l

κ + i∆R + inΩ
(11d)

corresponding to the l-order coefficients in a recursive way.
In the case of identical cavity detuning (∆ = ∆L = ∆R) and symmetric modulation of the

external driving laser [EL(t) = ER(t)], it is reasonable to expect that the mean values 〈AL〉 and
〈AR〉 have the same stable solutions. Thus, Eqs. (10) and (11) can be further simplified as follows:

Pn,0 = Qn,0 = 0, (12a)

AL
n,0 = AR

n,0 =
EL
n

[κ + i(∆ + nΩ + J)] =
ER
n

[κ + i(∆ + nΩ + J)], (12b)

Pn,l = Qn,l = AL
n,l = AR

n,l = 0. (12c)

Figure 2 gives both the numerical and the analytical results of the real and imaginary parts of
the mean values in the case of identical cavity detuning for three different modulation driving
laser. The numerical solutions of mean values corresponding to Eq. (5) agree well with the
analytical results of Eqs. (8) and (12) in the long time limit. Figure 2(a) displays the asymptotic
evolution of the real and imaginary parts of the left (or right) cavity mode mean value 〈AL〉
(or 〈AR〉) in the case of symmetric modulation driving laser. It is obvious that the numerical
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Fig. 2. Time evolution of the real and imaginary parts of the mean values in the case
of identical cavity detuning for three different modulation driving lasers. (a) symmetric
modulation with EL(t) = ER(t) = 7× 104 + 3.5× 104 × e−iΩt + 3.5× 104 × eiΩt ; (b) single
cavity driving with EL(t) = 7 × 104 + 3.5 × 104 × e−iΩt + 3.5 × 104 × eiΩt , ER(t) = 0;
(c) single cavity modulation with EL(t) = 7 × 104 + 7 × 104 × e−iΩt + 7 × 104 × eiΩt ,
ER(t) = 7 × 104. The chosen parameters in units of ωm are: Ω = 2, κ = 0.1, γm = 0.001,
J = 2, ∆ = 3, and g = 4 × 10−6.

results (solid red and dashed green lines) agree well with the analytical results (dash dotted
blue and dotted black lines) after about 15 modulation periods. And the numerical results of the
mean values 〈P〉 and 〈Q〉 obtained by Eq. (5) equal to zero, which are completely consistent
with the analytical results of Eqs. (8) and (12) [no shown in Fig. 2(a)]. In Figs. 2(b) and 2(c),
we plot the the asymptotic evolution of the mean values in cases of single cavity driving and
single cavity modulation, respectively. Since our calculations reveal that the numerical results
agree well with the analytical results after about hundreds of modulation periods, we only plot
the numerical solutions in the long time limit in order to avoid confusion. All results in Fig. 2
show that the asymptotic evolution periods of the mean values are indeed τ, where we have
truncated the series in Eq. (12) to the terms with subscript |n| ≤ 1. We also find that the real
parts of the mean values 〈P〉 and 〈Q〉 are no longer zero in the cases of single cavity driving
and single cavity modulation, and the needed number of modulation period to achieve stable
result varies with modulation mechanisms and parameters. For example, corresponding to three
different modulation mechanisms and chosen parameters in Figs. 2(a)–2(c), the required numbers
of modulation period for cavity modes to achieve the stable mean values respectively are about 15,
348, and 123, while those for the mechanical oscillator are 598 and 278 [see Figs. 2(b) and 2(c)].
Obviously, from the point of the required time for obtaining steady state, the effect of symmetric
modulation is the best.

To gain more insights about the dynamics, we respectively plot the phase space trajectories of
the mean values for symmetric and asymmetric modulations in Fig. 3. As shown in Fig. 3(a), when
the system is stable after dozens of modulation periods, the numerical phase space trajectories
of 〈AL(t)〉 (or 〈AR(t)〉) finally converge to a limit cycle in the case of symmetric modulation,
which agrees well with analytical prediction. In the cases of single cavity driving and single
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Fig. 3. Phase space trajectories of the classical c-number mean values. (a) Phase space
trajectories of 〈AL(t)〉 from t = 0 to t = 30τ for symmetric modulation; (b) Phase space
trajectories of cavity field mean values and the dimensionless mechanical position and
momentum mean values for asymmetric modulation. The left and right columns are results
of single cavity driving and single cavity modulation, respectively. All the chosen parameters
are identical to those in Fig. 2.

cavity modulation, the numerical results in Fig. 3(b) display that the phase space trajectories of
the cavity mode mean values 〈AL(t)〉,〈AR(t)〉, and the dimensionless mechanical position and
momentum mean values almost converge to a limit cycle after hundreds of modulation periods.

4. Stationary bosonic squeezing and entanglement

Since the asymptotic evolution period of the system is τ, without loss of generality, we assume
the asymptotic form for time-dependent mean values of the cavity modes as follows:

〈AL(t)〉 = AL0 + AL1e−iΩt, (13a)

〈AR(t)〉 = AR0 + AR1e−iΩt, (13b)

where Aj0 and Aj1 are positive real number and related to the driving amplitude components EL
n

and ER
n in Eq. (9). When t →∞ and ωm � γm > 0, the corresponding mechanical mean values

and the driving amplitude can be readily derived from Eq. (5) via Laplace transformation and
inverse transformation

〈P(t)〉 ' igΩ(AR0 AR1 − AL0 AL1)
(Ω2 − ω2

m)
(e−iΩt − eiΩt ), (14a)

〈Q(t)〉 '
g(A2

R0 + A2
R1 − A2

L0 − A2
L1)

ωm
+
g(AR0 AR1 − AL0 AL1)

ωm
× (1 − Ω2

Ω2 − ω2
m
)(e−iΩt + eiΩt ),

(14b)

EL(t) 'EL
0 +EL

1 e−iΩt+EL
−1eiΩt+EL

2 e−2iΩt, (14c)

ER(t) 'ER
0 +ER

1 e−iΩt+ER
−1eiΩt+ER

2 e−2iΩt, (14d)
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Fig. 4. Real and imaginary parts of cavity mode mean value
〈
Aj (t)

〉
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the long time limit. The chosen parameters in units of ωm are: Ω = 2, κ = 0.1, γm = 0.001,
J = 2, ∆ = 3, g = 4 × 10−6, AL0 = 0.1/

√
2g, AL1 = 0.04/

√
2g, AR0 = 0.08/

√
2g, and

AR1 = 0.02/
√

2g.

with the driving amplitude components

EL
0 =(κ + i∆L)AL0 + iJ AR0 +

ig2 AL0(A2
R0 + A2

R1 − A2
L0 − A2

L1)
ωm

(15a)

+
ig2 AL1(AR0 AR1 − AL0 AL1)

ωm
(1 − Ω2

Ω2 − ω2
m
),

EL
1 =[κ + i(∆L −Ω)]AL1 + iJ AR1 +

ig2 AL1(A2
R0 + A2

R1 − A2
L0 − A2

L1)
ωm

(15b)

+
ig2 AL0(AR0 AR1 − AL0 AL1)

ωm
(1 − Ω2

Ω2 − ω2
m
),

EL
−1 =

ig2 AL0(AR0 AR1 − AL0 AL1)
ωm

(1 − Ω2

Ω2 − ω2
m
), (15c)

EL
2 =

ig2 AL1(AR0 AR1 − AL0 AL1)
ωm

(1 − Ω2

Ω2 − ω2
m
), (15d)

ER
0 =(κ + i∆R)AR0 + iJ AL0 −

ig2 AR0(A2
R0 + A2

R1 − A2
L0 − A2

L1)
ωm

(15e)

− ig2 AR1(AR0 AR1 − AL0 AL1)
ωm

(1 − Ω2

Ω2 − ω2
m
),

ER
1 =[κ + i(∆R −Ω)]AR1 + iJ AL1 −

ig2 AR1(A2
R0 + A2

R1 − A2
L0 − A2

L1)
ωm

(15f)

− ig2 AR0(AR0 AR1 − AL0 AL1)
ωm

(1 − Ω2

Ω2 − ω2
m
),

ER
−1 = −

ig2 AR0(AR0 AR1 − AL0 AL1)
ωm

(1 − Ω2

Ω2 − ω2
m
), (15g)

ER
2 = −

ig2 AR1(AR0 AR1 − AL0 AL1)
ωm

(1 − Ω2

Ω2 − ω2
m
). (15h)

In the long time limit, when driving amplitudes EL(t) and ER(t) with forms as Eqs. (14) and
(15) are applied to Eq. (5), Fig. 4 numerically confirms that the time-dependent mean values of
the cavity modes just as Eq. (13) are precisely generated, where the parameters Aj0 and Aj1 are
taken as AL0 = 0.1/

√
2g, AL1 = 0.04/

√
2g, AR0 = 0.08/

√
2g, and AR1 = 0.02/

√
2g. In fact, the
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above four parameters can be arbitrary assigned when the requirement AL1 + AR1 < AL0 + AR0 is
met, which ensures stability. Thus, one can always design the corresponding modulation driving
laser to realize mean values of the cavity modes with any periodic form (the specific form is
dependent on what effect we want to achieve).
In the following, based on the assumption of Eq. (13) we analyze how to enhance squeezing

and entanglement via the symmetrically and asymmetrically periodic modulation. By introducing
the position and momentum quadratures for the two cavity modes and their input noises

xj =
aj + a†j√

2
, (16a)

yj =
aj − a†j

i
√

2
, (16b)

xin
j (t) =

ain
j (t) + ain†

j (t)√
2

, (16c)

yin
j (t) =

ain
j (t) − ain†

j (t)

i
√

2
, (16d)

and the column vectors of all quadratures and noises

U =(q, p, xL, yL, xR, yR)T, (17a)

N(t) =(0, ξ(t),
√

2κxin
L (t),
√

2κyin
L (t),
√

2κxin
R (t),
√

2κyin
R (t))T, (17b)

Eq. (6) can be rewritten as

ÛU = R(t)U + N(t) (18)

with

R(t) =

©«

0 ωm 0 0 0 0
−ωm −γm −GLr(t) −GLi(t) GRr(t) GRi(t)

GLi(t) 0 −κ ∆1(t) 0 J
−GLr(t) 0 −∆1(t) −κ −J 0
−GRi(t) 0 0 J −κ ∆2(t)
GRr(t) 0 −J 0 −∆2(t) −κ

ª®®®®®®®¬
, (19)

where the effective time-modulated detuning

∆1(t) = ∆L + g 〈Q〉 , (20a)
∆2(t) = ∆R − g 〈Q〉 , (20b)

G jr(t) and G ji(t) are respectively real and imaginary parts of the effective coupling coefficient

G j(t) =
√

2g
〈
Aj(t)

〉
=
√

2g(Aj0 + Aj1e−iΩt ) = G j0 + G j1e−iΩt . (21)

When the system is stable, it converges to a time-dependent Gaussian state [65], which is
independently from the initial condition. Thus, the asymptotic state of the fluctuation is fully
described by the covariance matrix (CM) σ(t) of the pairwise correlation among the quadratures,
where the entries of the CM are defined as

σk,l =< Uk(t)Ul(t) +Ul(t)Uk(t) > /2. (22)
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From Eqs. (18) and (22), it can be deduced

Ûσ(t) = R(t)σ(t) + σ(t)R(t)T + D, (23)

where D is a diffusion matrix whose components are associated with the noise correlation
functions and defined as

δ(t − t ′)Dk,l =
〈
Nk(t)N†l (t

′) + N†
l
(t ′)Nk(t)

〉/
2. (24)

It can be gained from Eqs. (3) and (4)

D = diag(0, γm(2nm + 1), κ(2na + 1), κ(2na + 1), κ(2na + 1), κ(2na + 1)). (25)

In the long time limit, based on Floquet’s theorem [17, 18, 20, 66] the periodicity of the entries
of R(t) implies that asymptotic solution of the linear differential Eq. (23) will have the same
period τ, i.e.,

σ(t) = σ(t + τ). (26)

The CM σ(t) can be written as a block matrix

σ(t) =

©«
σM σML σMR

σT
ML σL σLR

σT
MR σT

LR σR

ª®®®®®¬
, (27)

where each block represents a 2 × 2 matrix. The diagonal blocks represent the variance within
each subsystem (for example, resonator M, the left cavity mode L, and the right cavity mode R),
while the off-diagonal blocks denote covariance across different subsystems. Since the asymptotic
state of the system is Gaussian, it is convenient to measure the pairwise entanglement EN with
the logarithmic negativity [67, 68], which can be readily computed from the reduced 4 × 4 CM
σr(t) for two subsystems

σr(t) =
©«
σ1 σc

σT
c σ2

ª®¬ . (28)

The logarithmic negativity EN is then given by

EN = max[0,− ln(2η)] (29)

with
η ≡ 2−1/2{Σ − [Σ2 − 4 detσr]1/2}1/2, (30)

where
Σ ≡ detσ1 + detσ1 − 2 detσc. (31)

Figure 5 displays the asymptotic evolution of the first row and the first column element σ11(t)
of CM, namely variance of the mechanical oscillator position operator, while Fig. 6 shows
the asymptotic evolution of cavity-cavity entanglement EN for symmetrical and asymmetrical
modulations, where all results are only numerically calculated since the numerical results of
mean value agree well with the analytical results after hundreds of modulation periods. Here and
the following, the stability of the system can be guaranteed by all eigenvalues of the matrix R(t)
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Fig. 5. Variance of the mechanical oscillator position operator σ11(t) as a function of time
in the long time limit from t = 598τ to t = 600τ. (a)Ω = 2 for symmetric modulation;
(b)Ω = 1.97 for single cavity driving; (c)Ω = 1.97 for single cavity modulation. In all
figures, the solid (red) and dashed (blue) lines correspond to the cases of na = 0, nm = 0
and na = 0, nm = 1 respectively and are plotted with logarithmic coordinates. The other
parameters are the same as those in Fig. 2.

having a negative real part for all time, which is justified based on the Routh-Hurwitz criterion [69].
Obviously, the squeezing of the mechanical mode and the cavity-cavity entanglement are indeed τ
period when the system finally tends to be stable in the long time limit. Noticeably, the squeezing
and the entanglement can be significantly enhanced compared with the parametric interaction,
which are limited by a factor of 1/2 below the zero-point level, i.e., 0.25 (the so-called 3dB
limit) [4–6, 17, 19], and 0.69 [7, 13, 17, 19], respectively.

In order to better understanding the physical reality, we introduce the creation and annihilation
operators of the mechanical fluctuations

b = (q + ip)/
√

2, b† = (q − ip)/
√

2 (32)

and the nonlocal bosonic modes

c1 = (aL + aR)/
√

2, c2 = (aL − aR)/
√

2. (33)

Thus, the linearized system Hamiltonian in Eq. (7) can be rewritten as

Hlin = ∆3c†1c1 + ∆4c†2c2 + ωmb†b + 1
2
√

2
{[G∗L(t) − G∗R(t)]c1 (34)

+[G∗L(t) + G∗R(t)]c2 + h.c.}(b + b†),

where ∆3 = ∆1(t) + J, ∆4 = ∆2(t) − J. In the interaction picture with respect to the free part
∆3c†1c1 + ∆4c†2c2 + ωmb†b, if the relationship between the effective coupling G j(t) and effective
mean value of the cavity modes

〈
Aj(t)

〉
is taken as Eq. (21), Eq. (34) is transformed to
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Fig. 6. Asymptotic evolution of cavity-cavity entanglement EN as a function of time in the
long time limit from t = 0 to t = 1500τ. We take na = 0, nm = 0, and Ω = 2. (a) symmetric
modulation; (b) single cavity driving; (c) single cavity modulation. The other parameters are
the same as those in Fig. 2 except κ = 0.001 and γm = 0.1.

∼
H =

g

2
{[(AL0 − AR0)e−i(∆3+ωm)t + (AL1 − AR1)e−i(∆3+ωm−Ω)t ]c1b

+[(AL0 + AR0)e−i(∆4+ωm)t + (AL1 + AR1)e−i(∆4+ωm−Ω)t ]c2b

+ [(AL0 − AR0)e−i(∆3−ωm)t + (AL1 − AR1)e−i(∆3−ωm−Ω)t ]c1b†

+ [(AL0 + AR0)e−i(∆4−ωm)t + (AL1 + AR1)e−i(∆4−ωm−Ω)t ]c2b† + h.c.}. (35)

Here we focus on the range gAj0, gAj1 � ωm,Ω, and set J = 2ωm, ∆L = ∆R = 3ωm without loss
of generality. Based on Eqs. (14) and (20), we have

∆3 = ∆1(t) + J ' 5ωm +
g2(A2

R0 + A2
R1 − A2

L0 − A2
L1)

ωm
, (36a)

∆4 = ∆2(t) − J ' ωm −
g2(A2

R0 + A2
R1 − A2

L0 − A2
L1)

ωm
, (36b)

where the fast oscillating terms e±iΩt have been neglected. When the modulation frequency is
chosen to match with the resonance frequency of the nonlocal cavity and mechanical modes, i.e.,

Ω = 2ωm −
g2(A2

R0 + A2
R1 − A2

L0 − A2
L1)

ωm
, (37)

all rapid oscillating terms in Eq. (35) can be neglected and the Hamiltonian can be rewritten as

∼
H '

g

2
[(AL1 + AR1)c2b + (AL0 + AR0) × e

ig2(A2
R0+A

2
R1−A

2
L0−A

2
L1)t

ωm c2b† + h.c.]. (38)
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Due to the fact that ig2(A2
R0 + A2

R1 − A2
L0 − A2

L1)/ωm � AL0 + AR0, the slow varying term
(AL0 + AR0)eig

2(A2
R0+A

2
R1−A

2
L0−A

2
L1)t/ωm c2b† is roughly treated as a costant (AL0 + AR0)c2b† for the

simplicity in the following analyses.
Introducing two Bogoliubov-mode annihilation operators

β1 = b cosh r + b† sinh r, (39)
β2 = c2 cosh r + c†2 sinh r, (40)

where the squeezing parameter r is defined as tanh r = (AL1 + AR1)/(AL0 + AR0). Assuming
AL1 + AR1 < AL0 + AR0, which ensures stability of the system, the Hamiltonian of Eq. (38)
becomes

∼
H ' χc2β

†
1 + h.c. (41)

or ∼
H ' χbβ†2 + h.c. (42)

with the coupling

χ = g

√
(AL0 + AR0)2 − (AL1 + AR1)2

/
2. (43)

This is a beam-splitter-like Hamiltonian, which is well known from optomechanical sideband
cooling [70, 71]. Obviously, the ground state of β1 or β2 is the single-mode squeezed state of
the mechanical mode b or two-mode squeezed state of the cavity modes aL and aR, respectively.
When the mechanical decay rate γm is small, which ensures that the mechanical mode b only
weakly couples to the mechanical thermal baths with relatively large mean thermal occupancies,
the dynamics of mechanical mode b, i.e., the Bogoliubov mode β1, is dominated by the interaction
with the nonlocal bosonic modes c2, namely, the cavity modes aL and aR. Therefore, the
Bogoliubov mode β1 can be cooled to near ground state via the beam-splitter-like interaction
[Eq. (41)] with the nonlocal bosonic modes c2, which strongly interacts with optical thermal baths
with neglectable small mean thermal occupancies. In other words, the dissipative dynamics of
the cavity modes can be used to cool the Bogoliubov mode β1, generating single-mode squeezing
of the mechanical mode. In contrary, if the cavity decay rate κ is smaller compared with the
mechanical decay rate γm and the mechanical mode b has been precooled by a cold reservoir,
as discussed in [31], the beam-splitter-like interaction between the mechanical mode b and the
Bogoliubov mode β2 [Eq. (42)] can be exploited to cool the cavities, obtaining the stationary
two-mode squeezing state of two cavities. The system dynamics behaviors numerically shown
in Figs. 5 and 6 can be explained very well by the above analyses. Notably, all of the above
analyses are based on the assumption that the system is stable and does not enter the chaotic
regime [72–74]. Under the circumstance, the amount of stationary squeezing or entanglement
is a nonmonotonic function of the ratio of the effective mean value (AL1 + AR1)/(AL0 + AR0)
or the ratio of the effective coupling (GL1 + GR1)/(GL0 + GR0). According to the Hamiltonian
in Eqs. (41) or (42), the increase of the ratio has two competing effects. On the one hand, it
can increase the squeezing parameter r = tanh−1(AL1 + AR1)

/
(AL0 + AR0) and enhance the

stationary squeezing and entanglement. On the other hand, it can weaken the cooling effects by
declining the coupling strength of the beam-splitter-like interaction. Thus the optimum parameters
are a tradeoff between these two competing effects. Accordingly, for a group of specifically
optimum parameter values of AL1,AR1, AL0 and AR0 as Eq. (13), the optimum modulations of
driving lasers are completely determined by Eqs. (14) and (15), which depend on the parameters
κ, γm, ∆L, ∆R, Ω, g, and ωm. Noteworthily, the choice of parameters κ and γm varies with
different purpose, resulting in the optimum modulation of driving lasers being also different. The
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Fig. 7. Mimimum variance σ11,min of the mechanical oscillator position operator versus the
modulation frequencyΩ. The chosen parameters in units of ωm are κ = 0.1, γm = 0.001,J =
2, ∆ = 3, g = 4 × 10−6, GL0 = 0.13, GL1 = 0.12, GR0 = 0.07, and GR1 = 0.06.
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Fig. 8. Maximum cavity-cavity entanglement EN,max versus the modulation frequency Ω.
All the other parameters are the same as those in Fig. 7 except κ = 0.001, γm = 0.1.

modulation of driving lasers adopted in Figs. 5 and 6 may be not the optimal, which is not our
focus of concern. Here, we only verify the enhancement of the squeezing and entanglement via
symmetrically and asymmetrically periodically modulated lasers. As shown in Fig. 2, when the
system is stable, the evolutions of mean value of two cavity modes are fully synchronized in
the case of symmetric modulation, leading to the parameters AL1 = AR1, AL0 = AR0. Under the
circumstance of asymmetric modulation, the amplitudes of mean value of two cavity modes are no
longer equal, i.e., AL1 , AR1, AL0 , AR0. However, both symmetric and asymmetric modulations
can achieve the same period τ of the system steady state. The difference is that the needed number
of modulation period to achieve stable result varies with modulation mechanisms. Since the
amount of stationary squeezing or entanglement depends on the ratio of the effective mean value
(AL1 + AR1)/(AL0 + AR0) rather than the specific value of each parameter, both symmetric and
asymmetric modulations of the external driving laser are effective, provided that the effective
mean value (AL1 + AR1)/(AL0 + AR0) is optimized.

In order to explore the effect of the optimal modulation frequency on single-mode squeezing
and two-mode squeezing, the mimimum variance σ11,min of the mechanical oscillator position
operator and the maximum cavity-cavity entanglement EN,max as a function of the modulation
frequency Ω are plotted in Figs. 7 and 8, respectively. The results are numerically evaluated by
applying the corresponding exact mean values in Eq. (14) with na = 0, nm = 0 and the parameters
GL0 = 0.13, GL1 = 0.12, GR0 = 0.07, and GR1 = 0.06. Though the group parameters may not be
the optimal values, the results of Figs. 7 and 8 show that the optimal modulation frequency is
close to 2ωm, which is indeed the same as the result predicted by Eq. (37). Besides, compared to
the squeezing of the mechanical oscillator position operator, the cavity-cavity entanglement has a
larger scale of modulation frequency Ω, which implies that the squeezing is more sensitive to the
variation of the modulation frequency.
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5. Conclusions

In summary, we have explored the mechanism of periodic driving laser modulation in a dissipative
three-mode optomechanical system. Our studies show that combinations of the modulation and the
dissipation can significantly enhance the mechanical squeezing and cavity-cavity entanglement.
What is more, both symmetric and asymmetric modulations of the external driving laser are
effective when we carefully balance the two opposing effects by varying the ratio of the effective
mean values of cavity modes or effective coupling. The numerical simulation results signify that
it is sufficient to enhance the squeezing and entanglement effects as long as one periodically
modulated laser is applied to either end of the cavities, which is convenient for actual experiment.
However, the cost is more modulation periods required for achieving system stability. In order to
achieve large squeezing and entanglement, apart from selecting appropriate ratio of the effective
mean values of cavity modes or effective coupling, the modulation frequency should also be
chosen carefully.
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