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We study the optimal Slater-determinant approximation of an N -fermion wave function analytically. That
is, we seek the Slater-determinant (constructed out of N orthonormal single-particle orbitals) wave function
having largest overlap with a given N -fermion wave function. Some simple lemmas have been established and
their usefulness is demonstrated on some structured states, such as the Greenberger-Horne-Zeilinger state. In the
simplest nontrivial case of three fermions in six orbitals, which the celebrated Borland-Dennis discovery is about,
the optimal Slater approximation wave function is proven to be built out of the natural orbitals in an interesting
way. We also show that the Hadamard inequality is useful for finding the optimal Slater approximation of some
special target wave functions.
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I. INTRODUCTION

Fermionic wave functions have deep structures. A com-
monplace knowledge as a consequence of the antisymmetry
condition [1,2] is the Pauli exclusion principle [3] (though
historically, the two were developed in the reversed order).
However, less appreciated is that the antisymmetry condition
can have much deeper consequences. In this regard, we have
the celebrated discovery by Borland and Dennis [4–6]: For
a wave function with three fermions in six orbitals, the
occupation numbers λi in the six natural orbitals [7], ordered
in the descending order, satisfy

λ1 + λ6 = λ2 + λ5 = λ3 + λ4 = 1, (1a)

λ5 + λ6 � λ4, (1b)

besides the common knowledge of 0 � λi � 1. It is remark-
able that initially this discovery was made through numerical
experiments—apparently, it is hard to suspect such relations
analytically. The fact that the m-particle reduced density
matrix of an N -fermion wave function must have nontrivial
structures had actually been perceived earlier by Coleman [8].
This led him to propose the “N -representability” problem
[8,9], which turns out to be a very difficult one. Only
recently has the problem in the simplest case of m = 1 been
solved [10], generalizing the equalities and inequalities in (1)
systematically. This has led to a burst of studies of the relevance
and implications of the so-called generalized Pauli constraints
like (1) in atoms, molecules, and model systems [11–20]. As
for the next case of m = 2 (which is possibly of more interest
from the point of view of calculating the ground state energy of
a multielectron system), a systematic procedure for generating
the N -representability conditions on the two-particle reduced
density matrix has been derived by Mazziotti [21]. In this
case, also, approximate N -representability conditions have
been applied to a variety of systems [22].
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In this paper, we study the structure of an N -fermion wave
function by looking for its optimal Slater approximation. The
idea is to approximate an antisymmetric wave function with
the simplest kind of wave function satisfying the antisymmetry
condition [23], so as to gain an idea of the complexity of
the target wave function. Here by optimal [24], we mean the
overlap between the target wave function and the Slater wave
function is maximized. In view of the fact that a Slater state is
determined by M = N orthonormal single-particle orbitals (or
more appropriately, an M = N dimensional subspace of the
single-particle Hilbert space), the problem can be generalized
to M > N . That is, we seek M orthonormal single-particle
orbitals (or an M-dimensional subspace) so that the projection
of the wave function onto the space spanned by the CN

M Slater
determinants is maximized. Apparently, this problem is about
the geometry of a multifermion Hilbert space. It naturally
provides a geometric measure [25–27] of the entanglement
between the fermions. Compared to those measures based on
Schmidt decomposition or dividing a multipartite system into
subsystems, it has the advantage of identical particles being
treated identically, namely, on an equal footing [28].

The problem was proposed and studied previously in
Ref. [29], with the motivation of gauging the reliability of the
multiconfiguration time-dependent Hartree-Fock algorithm
[30–36]. There, the approach was primarily numerical, and
an efficient iterative algorithm was proposed. On the analytic
side, the N = 2 case turned out to be simple enough to allow for
a complete solution. The answer is simply that one should take
the M (if M is even; otherwise, take M − 1) most occupied
natural orbitals.

We also note that the structure of a fermionic wave function
has recently been extensively studied by Chen et al. [37,38].
Some of their results are of direct relevance to our problem.
Their approach has the merit of being more systematic and
more general, but sometimes it is too sophisticated.

This paper is organized as follows. After stating the problem
in Sec. II, we will establish in Sec. III some simple lemmas.
These lemmas, although simple, enable us to find the optimal
Slater approximation of some simply structured states effort-
lessly. For example, for the state f = (

√
2|123〉 + |456〉)/√3,
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we can immediately tell that its optimal Slater approximation
is |123〉. Then in Sec. IV, we will turn from the general case
to the particular case of three fermions in six orbitals, i.e., we
will focus on states f ∈ ∧3H6. This is the simplest nontrivial
case both in Borland-Dennis’s study and in ours. We will
prove the canonical form of the wave function, which was first
proven by Chen et al. [38], using a more elementary and more
straightforward method. With this canonical form, we find
that the optimal Slater approximation has a simple structure
in terms of the natural orbitals. In Sec. V, we show that the
Hamadard inequality is useful for determining the optimal
Slater approximation for many structured states of interest.
We summarize in Sec. VI and discuss some open questions.

II. FORMULATION OF THE PROBLEM

The problem has been formulated in Ref. [29] before. Here
we reformulate it in terms of exterior algebra, or Grassmann
algebra, which is the most suitable language for fermions [39].

For N particles in a d-dimensional Hilbert space Hd , the
total Hilbert space is the tensor space T N (Hd ) ≡ ⊗NHd . The
inner product on T N is defined by

〈φ1 ⊗ · · · ⊗ φN |ψ1 ⊗ · · · ⊗ ψN 〉T =
N∏

i=1

(φi,ψi), (2)

and extended by linearity. Here φi , ψj ∈ Hd , and (·,·) is the
inner product on Hd .

If the particles are identical fermions, the wave function
must be an alternating, or antisymmetric, tensor. The effective
Hilbert space is then the alternating subspace AN (Hd ) ≡
∧NHd , which is spanned by tensors in the form of

φ1 ∧ · · · ∧ φN ≡ AN (φ1 ⊗ · · · ⊗ φN )

= 1

N !

∑
P∈SN

sgn(P )φP1 ⊗ · · · ⊗ φPN
. (3)

Here sgn(P ) means the sign of the permutation P . If
{e1,e2, . . . ,ed} is a linearly independent basis of Hd , then
{ej1 ∧ ej2 ∧ · · · ∧ ejN

} with 1 � j1 < j2 · · · < jN � d is a
linearly independent basis of ∧NHd .

In mathematical terms, an N -fermion wave function f

in ∧NHd is called an N -vector. If there exist N linearly
independent vectors (or orbitals, in the physical term) {ϕi |1 �
i � N} such that

f = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕN, (4)

we call f a decomposable N -vector. Physically, it is a Slater-
determinant wave function constructed out of the orbitals
{ϕi |1 � i � N}. A basic point is that a Slater determinant
is determined by the subspace spanned by the orbitals, i.e.,
span{ϕ1, . . . ,ϕN }, up to a nonzero scalar factor. Actually,
suppose {ψi = ∑N

j=1 aijϕj |1 � i � N} is another linearly
independent basis of span{ϕ1, . . . ,ϕN }, which means the
transform matrix a is nonsingular, then

ψ1 ∧ · · · ∧ ψN = det(a)ϕ1 ∧ · · · ∧ ϕN. (5)

The inner product on ∧NHd is defined as

〈φ1 ∧ · · · ∧ φN |ψ1 ∧ · · · ∧ ψN 〉
≡ N !〈φ1 ∧ · · · ∧ φN |ψ1 ∧ · · · ∧ ψN 〉T = det[(φi,ψj )],

(6)

and extended by linearity. We easily see that two Slater
determinants are orthogonal if and only if there is a nonzero
vector in Vφ = span{φ1, . . . ,φN } orthogonal to the space
Vψ = span{ψ1, . . . ,ψN }, or equivalently, there is a nonzero
vector in Vψ orthogonal to Vφ .

For an arbitrary N -vector f in ∧NHd , a subspace V ⊂
Hd is said to envelop f if f ∈ ∧NV , with ∧NV regarded
naturally as a subspace of ∧NHd . In other words, f is a linear
combination of exterior products φ

(i)
1 ∧ · · · ∧ φ

(i)
N , with φ

(i)
k ∈

V . It can be shown that there exists a minimal subspace E(f )
which is a subspace of every V enveloping f . Actually, E(f ) is
spanned by the natural orbitals of f with nonzero occupation
numbers. The dimension of E(f ) is called the rank of f . In
this term, an N -vector f is decomposable if and only if its
rank is N .

Now comes the problem. An N -fermion wave function � in
∧NHd , say the ground state of a system of interacting fermions,
is generally not a Slater determinant, or not a decomposable
N -vector. However, a natural question out of the spirit of
approximation is, is it possible to approximate the wave
function with a Slater determinant to a good accuracy? The
inner product on ∧NHd provides a natural measure of distance
or proximity, without reference to any physical quantity. The
quantity of interest is then

Imax(�; N ) ≡ max
Vφ⊂Hd

|〈φ1 ∧ φ2 ∧ · · · ∧ φN |�〉|2. (7)

Here the maximum is taken over all N -dimensional subspaces
Vφ ofHd , with φ1,φ2, . . . ,φN being its orthonormal basis. This
is the simplest, single-configuration approximation, with the
rank of the approximation M equal to the number of fermions.

In the more general case, the rank of the approximation M

can be larger than N . The quantity of interest is then

Imax(�; M) ≡ max
Vφ⊂Hd

∑
J

|〈φj1 ∧ φj2 ∧ · · · ∧ φjN
|�〉|2. (8)

Here J = (1 � j1 < j2 < · · · < jN � M) runs through all
the different N tuples. The maximum is taken over all M-
dimensional subspaces Vφ of Hd , with φ1,φ2, . . . ,φM being
its orthonormal basis.

In this paper, we shall focus primarily on the single-
configuration case with M = N , but occasionally we also
touch on the multiconfiguration case.

III. USEFUL LEMMAS

First we formulate some lemmas (some of which were
known previously) and give self-consistent proofs:

Lemma 1. If d = N + 1, then for an arbitrary normalized
wave function � ∈ ∧NHd , Imax(�; N ) = 1. That is, � can be
written in the form of a Slater wave function.

Proof. First we show that a wave function in the form of

W = φ1 ∧ φ2 ∧ · · · ∧ φN + ψ1 ∧ ψ2 ∧ · · · ∧ ψN, (9)
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where {φi |1 � i � N} and {ψi |1 � i � N} are two sets of
linearly independent vectors in Hd , can be rewritten in the
compact form of a single Slater determinant,

W = ϕ1 ∧ ϕ2 ∧ · · · ∧ ϕN. (10)

Consider the union of the two N -dimensional spaces Vφ ≡
span{φ1, . . . ,φN } and Vψ ≡ span{ψ1, . . . ,ψN }. If dim(Vφ ∪
Vψ ) = N , then Vφ = Vψ , and the two terms in (9) are the same
up to a scalar factor and thus W can be rewritten in the form of
(10). If dim(Vφ ∪ Vψ ) = N + 1, then dim(Vφ ∩ Vψ ) = N − 1.
Let Vφ ∩ Vψ = span{ϕ1, . . . ,ϕN−1}. There exist φ̃N and ψ̃N

such that

φ1 ∧ φ2 ∧ · · · ∧ φN = ϕ1 ∧ · · · ∧ ϕN−1 ∧ φ̃N , (11)

ψ1 ∧ ψ2 ∧ · · · ∧ ψN = ϕ1 ∧ · · · ∧ ϕN−1 ∧ ψ̃N . (12)

Therefore,

W = ϕ1 ∧ · · · ∧ ϕN−1 ∧ (φ̃N + ψ̃N ), (13)

which is in the form of (10).
Now an arbitrary state � ∈ ∧NHd can be expanded as

� =
d∑

i=1

cie1 ∧ · · · ∧ êi ∧ · · · ∧ ed, (14)

where êi means ei is missing in the wedge product. Now by
carrying out the process of merging two Slater determinants
into one, we can reduce � to the form of a single Slater
determinant in at most N steps. Therefore, an arbitrary state
� ∈ ∧NHd can always be reduced to a Slater-determinant
form and thus Imax(�; N ) = 1. �

This lemma is already stated in Ando’s paper [40]. In
Ref. [29], it was referred to as the N -in-(N + 1) theorem and
several proofs were given. Here, yet another proof is given
just for the sake of completeness. As emphasized in Ref. [29],
a consequence of Lemma 1 is for an arbitrary wave function
� ∈ ∧NHd , where d is not constrained to N + 1 but can be
arbitrary, Imax(�; N ) = Imax(�; N + 1), since a (N + 1)-rank
approximation is actually an N -rank approximation by the
lemma.

Lemma 2. If d > N , and M = d − 1, that is, we consider
dropping one orbital, then the orbital which should be dropped
is the least occupied natural orbital, and Imax(�; d − 1) =
1 − λd , where λd is the occupation of the least occupied natural
orbital.

Proof. Let {e1, . . . ,ed} be an orthonormal basis of Hd , in
which ed will be dropped. The wave function can be expanded
as

� =
∑

J

CJ ej1 ∧ ej2 ∧ · · · ∧ ejN
. (15)

Here J denotes an ordered N tuple (1 � j1 < j2 · · · < jN �
d). We have

I (�; d − 1) = 1 −
∑
J |d∈J

|CJ |2 = 1 − 〈ed |ρ|ed〉, (16)

where ρ is the one-particle reduced density matrix of �.
Apparently, to maximize I , we have to take ed as the
eigenvector of ρ corresponding to the smallest eigenvalue,
or the least occupied natural orbital. �

This lemma is also known previously [41].
Lemma 3. Let � be a normalized N -fermion wave function

in which orbital f is occupied with probability unity. That is,
� = f ∧ � ′, with � ′ being a (N − 1)-fermion wave function
and f ⊥ E(� ′). Then

Imax(�; N ) = Imax(� ′; N − 1). (17)

Moreover, the optimal Slater approximation S of � is S =
f ∧ S ′, with S ′ being the optimal Slater approximation of � ′.

Proof. For the optimal Slater approximation S, we can find
an orthonormal basis {φ1,φ2, . . . ,φN } for its supporting space
V such that

〈f |φi〉 = 0, 2 � i � N, (18)

as follows. Decompose f as f = f‖ + f⊥ with f‖ ∈ V and
f⊥ ∈ V ⊥. If f‖ �= 0, take φ1 ∝ f‖, while if f‖ = 0, take φ1

arbitrarily. Basis vectors {φ2, . . . ,φN } can then be obtained by
extending φ1 into a full orthonormal basis of V . It is readily
seen that such chosen basis vectors satisfy condition (18).

We have then S = (af + φ̃1) ∧ �, where φ1 = af + φ̃1,
a = 〈f |φ1〉, and � = φ2 ∧ · · · ∧ φN . Now

Imax(�; N ) = |〈S|�〉|2 = |a〈�|� ′〉|2 � |〈�|� ′〉|2
� Imax(� ′; N − 1). (19)

On the other hand, if � ′′ = ψ2 ∧ · · · ∧ ψN is the optimal Slater
approximation of � ′, then

Imax(� ′; N − 1) = |〈� ′′|� ′〉|2 = |〈f ∧ � ′′|f ∧ � ′〉|2
� Imax(�; N ). (20)

Equation (17) follows (19) and (20). Finally, to have the
equalities in (19) fulfilled, we must have φ1 = f and � = S ′.
That is, S = f ∧ S ′. �

Lemma 3 means that, if some orbital is always occupied,
it must be taken so as to maximize the overlap. The fact S =
f ∧ S ′ allows us to factorize the orbital f out to reduce the
N -fermion wave function to a (N − 1)-fermion wave function.

Lemma 4. Let � be a normalized N -fermion wave function
and let f and g be two orthogonal normalized orbitals. Suppose
� can be decomposed as � = � ′ + f ∧ g ∧ � ′′, where � ′ is
a N -fermion wave function and � ′′ a (N − 2)-fermion wave
function, and f,g ⊥ E(� ′) ⊕ E(� ′′), then

Imax(�; N ) = max{Imax(� ′; N ),Imax(� ′′; N − 2)}. (21)

Moreover, if Imax(� ′; N ) > Imax(� ′′; N − 2), then the optimal
Slater approximation S = S ′, where S ′ is the optimal Slater
approximation of � ′; while if Imax(� ′; N ) < Imax(� ′′; N −
2), then S = f ∧ g ∧ S ′′, where S ′′ is the optimal Slater
approximation of � ′′.

Proof. Let S be the optimal Slater approximation of
�. Similar to (18), we can find an orthonormal basis
{φ1,φ2, . . . ,φN } for its supporting space V such that

〈f |φi〉 = 0, 2 � i � N, (22a)

〈g|φi〉 = 0, 3 � i � N. (22b)

This can be done by first determining φ1 by the projection of
f onto V , and then determining φ2 to be the projection of g

onto the orthogonal supplement space of φ1 with respect to V .
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Expand φ1 and φ2 as φ1 = s1f + s2g + φ̃1, φ2 = t1g + φ̃2,
with s1 = 〈f |φ1〉, s2 = 〈g|φ1〉, and t1 = 〈g|φ2〉. Apparently,

|s1|2 + |s2|2 + ‖φ̃1‖2 = 1, |t1|2 + ‖φ̃2‖2 = 1. (23)

We have then S = (s1f + s2g + φ̃1) ∧ (t1g + φ̃2) ∧ �, with
� = φ3 ∧ · · · ∧ φN . We have

Imax(�; N ) = |〈S|�〉|2
= |〈φ̃1 ∧ φ̃2 ∧ �|� ′〉 + s∗

1 t∗1 〈�|� ′′〉|2
� M|‖φ̃1‖‖φ̃2‖ + |s1||t1||2
� M(‖φ̃1‖2 + |s1|2)(‖φ̃2‖2 + |t1|2)

� M. (24)

Here M ≡ max{Imax(� ′; N ),Imax(� ′′; N − 2)}. In the fourth
line, we used the Cauchy-Schwarz inequality, while in the
fifth line, we used (23). On the other hand, apparently, both
Imax(� ′; N ) and Imax(� ′′; N − 2) are attainable. Therefore, we
have (21).

If Imax(� ′; N ) > Imax(� ′′; N − 2), it is readily seen that to
make the equality in the third line of (24) satisfied, we must
have ‖φ̃1‖2 = ‖φ̃2‖2 = 1, and accordingly s1 = s2 = t1 = 0.
Thus, |〈S|�〉|2 = |〈S|� ′〉|2 and hence S = S ′, where S ′ is the
optimal Slater approximation of � ′. On the other hand, if
Imax(� ′; N ) < Imax(� ′′; N − 2), we must have |s1| = |t1| =
1 and accordingly ‖φ̃1‖2 = ‖φ̃2‖2 = s2 = 0, and thus S =
f ∧ g ∧ S ′′, where S ′′ is the optimal Slater approximation
of � ′′. �

Lemma 4 means that, if in a wave function, two orbitals are
occupied or unoccupied only simultaneously, then the wave
function can be broken down into two parts: in one the two
orbitals are both occupied, while in the other the two are both
unoccupied. The two parts can then be studied separately as
they do not interfere with each other.

Simple applications

The lemmas above, though simple, are very useful. In the
following, we show some examples, for which the lemmas
allow us to find Imax without effort.

Example 1. Consider the Greenberger-Horne-Zeilinger
(GHZ) -type state (N � 2)

� = a|12 · · · N〉 + b|N + 1,N + 2, . . . ,2N〉, (25)

with |a|2 + |b|2 = 1 and |a| > |b|. Here and henceforth, by
|ij, . . . ,k〉 we mean φi ∧ φj ∧ · · · ∧ φk . By Lemma 4, we
know immediately that the optimal Slater approximation is
|12 · · · N〉, and Imax(�; N ) = |a|2. By Lemma 2, we know for
M = 2N − 1, we can drop the 2N th orbital, and Imax(�; 2N −
1) = |a|2. Apparently, Imax(�; M) is a monotonically in-
creasing function of M . Therefore, Imax(�; M) = |a|2 for
N � M � 2N − 1.

Example 2. Suppose (N � 3)

� = a|12 · · · N〉 + b|1,N + 1, . . . ,2N − 1〉, (26)

with |a|2 + |b|2 = 1 and |a| > |b|. Now the first orbital is
always occupied and by Lemma 3, the problem can be reduced
to � ′ = a|2 · · · N〉 + b|N + 1, . . . ,2N − 1〉, which is in the
form of the wave function in Example 1. We have thus

Imax(�; N ) = |a|2 and the optimal Slater approximation is
|12 · · · N〉.

Example 3. Consider the three-fermion wave function

� = a|123〉 + b|345〉 + c|567〉. (27)

Taking f = |1〉 and g = |2〉, the wave function is first
decomposed as the sum of a|123〉 and b|345〉 + c|567〉.
For the latter, taking f = |3〉 and g = |4〉, it is further
decomposed as the sum of b|345〉 and c|567〉. By repeated
application of Lemma 4, we readily see that Imax(�; 3) =
max{|a|2,|b|2,|c|2}.

Similarly, for the four-fermion wave function

� = a|1234〉 + b|4567〉 + c|7891〉, (28)

Imax(�; 4) = max{|a|2,|b|2,|c|2}.
Example 4. Consider the two-fermion wave function

� = a|12〉 + b|23〉 + c|31〉, (29)

with |a|2 + |b|2 + |c|2 = 1. Since it is a wave function with
two fermions in three orbitals, by Lemma 1, Imax(�; 2) = 1.

IV. THE SIMPLEST NONTRIVIAL CASE: THREE-IN-SIX

So far, we have been dealing with the general case. Now we
turn to the specific case of three fermions in six orbitals, i.e.,
(N,d) = (3,6). Like in the “N -representability” problem, this
case is the simplest nontrivial case. The reason is as follows.
The N = 2 case has been solved completely already [29]—just
take the M most occupied natural orbitals. For N = 3, the
d = 4 is trivial by Lemma 1—the wave function is always
a Slater determinant. The d = 5 case is not difficult as well,
since by the particle-hole transform, it can be reduced to the
(N,d) = (2,5) case. Or mathematically, there is a Hodge dual
between ∧3H5 and ∧2H5.

We have the following proposition:
Proposition 1. For an arbitrary normalized wave function

� ∈ ∧3H6, its optimal Slater approximation S is of the form

(α1φ1 + β1φ6) ∧ (α2φ2 + β2φ5) ∧ (α3φ3 + β3φ4), (30)

where φi is the natural orbital corresponding to the ith largest
eigenvalue of the one-particle reduced density matrix of �. The
parameters αi and βj satisfy the condition |αi |2 + |βi |2 = 1.

This proposition is based on the canonical form of the wave
function in (44) below, which was first proven by Chen et al.
in [37,38]. Their proof involves sophisticated invariant theory.
Here we provide a direct and elementary proof.

Proof. Let S = f1 ∧ f2 ∧ f3 be the optimal Slater approxi-
mation of �, with {f1,f2,f3} being three orthonormal orbitals.
These orbitals can be extended into a full orthonormal basis
{f1,f2,f3,g1,g2,g3} of H6.

Now let us expand � in terms of the 20 Slater determinants
constructed out of fi and gj . It should be in the form of

� = af1 ∧ f2 ∧ f3 + cg1 ∧ g2 ∧ g3

+ f1 ∧ (b11g2 ∧ g3 + b12g3 ∧ g1 + b13g1 ∧ g2)

+ f2 ∧ (b21g2 ∧ g3 + b22g3 ∧ g1 + b23g1 ∧ g2)

+ f3 ∧ (b31g2 ∧ g3 + b32g3 ∧ g1 + b33g1 ∧ g2). (31)

The point is that terms fi ∧ fj ∧ gk do not appear. The reason
is that if some fi ∧ fj ∧ gk has a nonzero coefficient, it would
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mean a contradiction with the assumption that f1 ∧ f2 ∧ f3

is the optimal Slater approximation of �. For example, if
f1 ∧ f2 ∧ g1 has a nonzero coefficient d, then af1 ∧ f2 ∧ f3

and df1 ∧ f2 ∧ g1 can be combined into f1 ∧ f2 ∧ (af3 +
dg1), and the Slater wave function f1 ∧ f2 ∧ f̃3, with f̃3 =
(af3 + dg1)/

√
|a|2 + |d|2, has a larger overlap with � than

f1 ∧ f2 ∧ f3.
Next let us simplify the last three terms in (31). Define

(G1,G2,G3) = (g2 ∧ g3,g3 ∧ g1,g1 ∧ g2). (32)

They are orthonormal. The sum of the last three terms in (31)
is then in the form

� ′ =
3∑

i,j=1

bijfi ∧ Gj . (33)

Now make the transforms

fi =
3∑

j=1

U ∗
ikek, Gj =

3∑
m=1

VjmHm, (34)

where U and V are unitary matrices fulfilling the singular
value decomposition of the matrix b, i.e., U †bV = �, where
� is diagonal. Under these transforms,

� ′ =
3∑

k=1

�kkek ∧ Hk. (35)

Here Hk , as a linear combination of Gj , by Lemma 1, can be
written in the form

(H1,H2,H3) = (H12 ∧ H13,H23 ∧ H21,H31 ∧ H32),

(36)

with Hij ∈ W ≡ span{g1,g2,g3} and normalized. Moreover,

〈H12|H13〉 = 〈H21|H23〉 = 〈H31|H32〉 = 0. (37)

We can expand {H12,H13}, {H21,H23}, and {H31,H32} into a
complete orthonormal basis of W ,

W = span{H12,H13,h1}
= span{H21,H23,h2}
= span{H31,H32,h3}. (38)

From the fact that

〈H1|H2〉 = 〈H2|H3〉 = 〈H1|H3〉 = 0, (39)

it is easy to deduce that

〈h1|h2〉 = 〈h2|h3〉 = 〈h1|h3〉 = 0. (40)

That is, {h1,h2,h3} is an orthonormal basis of W . Thus,

H1 ∝ h2 ∧ h3, H2 ∝ h3 ∧ h1, H3 ∝ h1 ∧ h2, (41)

g1 ∧ g2 ∧ g3 ∝ h1 ∧ h2 ∧ h3. (42)

Similarly, since span{e1,e2,e3} = span{f1,f2,f3},
f1 ∧ f2 ∧ f3 ∝ e1 ∧ e2 ∧ e3. (43)

Finally, substituting (35), (41)–(43) into (31), we have the
canonical form of �,

� = Ae1 ∧ e2 ∧ e3 + Be1 ∧ h2 ∧ h3 + Ce2 ∧ h3 ∧ h1

+De3 ∧ h1 ∧ h2 + Eh1 ∧ h2 ∧ h3, (44)

with {e1,e2,e3,h1,h2,h3} being an orthonormal basis of H6,
e1 ∧ e2 ∧ e3 the optimal Slater approximation of �, and |A|2 +
|B|2 + |C|2 + |D|2 + |E|2 = 1.

Now, it is readily seen that, the one-particle reduced density
matrix ρ in the basis of {e1,h1,e2,h2,e3,h3} is a block matrix
consisting of three 2 × 2 matrices. Specifically, the 2 × 2 block
corresponding to {e1,h1} is(|A|2 + |B|2 E∗B

EB∗ |C|2 + |D|2 + |E|2
)

, (45)

the 2 × 2 block corresponding to {e2,h2} is(|A|2 + |C|2 E∗C
EC∗ |B|2 + |D|2 + |E|2

)
, (46)

and the 2 × 2 block corresponding to {e3,h3} is(|A|2 + |D|2 E∗D
ED∗ |B|2 + |C|2 + |E|2

)
. (47)

An important fact is that the three matrices all have trace of
unity, which means that the sum of the two eigenvalues is
unity. Therefore, we have

λ1 + λ6 = λ2 + λ5 = λ3 + λ4 = 1. (48)

We have thus proven that Borland-Dennis’s discovery (1a) is
necessary.

In the generic case, there is no degeneracy between the
eigenvalues and therefore {φ1,φ6} must appear in the same
block, and so must {φ2,φ5} and {φ3,φ4}. This means, for some
permutation P in the group S3,

eP 1 = α1φ1 + β1φ6, (49a)

eP 2 = α2φ2 + β2φ5, (49b)

eP 3 = α3φ3 + β3φ4, (49c)

with |αi |2 + |βi |2 = 1. We thus have (30).
In the case of degeneracy, the optimal Slater approximation

can still be written in the form of (30), but the natural orbitals
can no longer be chosen in an arbitrary way. For example, for
the GHZ state

�GHZ = 1√
2

(φ1 ∧ φ2 ∧ φ3 + φ4 ∧ φ5 ∧ φ6), (50)

its optimal Slater determinant is either φ1 ∧ φ2 ∧ φ3 or φ4 ∧
φ5 ∧ φ6 by Lemma 4. However, since the one-particle reduced
density matrix is simply a constant matrix with 1/2 on the
diagonal, an arbitrary vector is a natural orbital. It is obvious
that we cannot choose the natural orbitals randomly. �

Here some remarks are worth mentioning. Equation (30),
initially as an ansatz, was motivated by two observations of
Borland and Dennis. The first one is Eq. (1a). In the expansion
of (30), in each term, one and only one of {φ1,φ6} appear,
which means their occupations sum up to unity. This is in
alignment with (1a). The second one is that, in the expansion
of (30), we have eight terms, which are exactly the nonzero
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terms appearing in the expansion of a generic function � in
terms of its natural orbitals [4,5]. These two facts make the
ansatz (30) plausible and promising.

Proposition 1 also clarifies the role of the natural orbitals
in the construction of the optimal Slater approximation of
an arbitrary wave function. As pointed out in Ref. [29],
generally the Slater wave function constructed out of the N

most occupied natural orbitals shows no definite advantage
over a Slater wave function built of N randomly generated
orbitals. Actually, in some cases—for example, the state in
Eq. (55) below—the former can be orthogonal to the target
wave function. The usefulness of natural orbitals for generating
an efficient expansion of the target wave function was also
seriously questioned in Ref. [41]. Now, in the special case of
∧3H6, Proposition 1 tells us that the natural orbitals do play
an important role in the optimal Slater approximation, but in a
subtle way.

Although Eq. (30) is beautiful and general, it is not
convenient as a variational wave function, as it involves the
natural orbitals. To apply it for finding the optimal Slater
approximation, one must first solve the natural orbitals, which
is not necessarily an easy task, and then expand the wave
function in terms of the natural orbitals, which is again tedious
if it is feasible at all.

However, for some special kind of states, Eq. (30) can be ex-
pressed in another form without explicitly referring to the nat-
ural orbitals. Suppose we have a wave function in the form of

� = A0ϕ1 ∧ ϕ2 ∧ ϕ3 + A1ϕ1 ∧ ϕ2 ∧ ϕ4 + A2ϕ1 ∧ ϕ5 ∧ ϕ3

+A3ϕ1 ∧ ϕ5 ∧ ϕ4 + A4ϕ6 ∧ ϕ2 ∧ ϕ3 + A5ϕ6 ∧ ϕ2 ∧ ϕ4

+A6ϕ6 ∧ ϕ5 ∧ ϕ3 + A7ϕ6 ∧ ϕ5 ∧ ϕ4. (51)

Here {ϕi |1 � i � 6} is an orthonormal basis of H6 and∑7
j=0 |Aj |2 = 1. We note that the six basis vectors are divided

into three pairs, i.e., {ϕ1,ϕ6}, {ϕ2,ϕ5}, and {ϕ3,ϕ4}. The eight
Slater determinants are constructed by choosing one out of
each pair. We also note that the canonical form (44) is a
special case of (51). Now, like above, it is readily seen that
the one-particle density matrix ρ has a block diagonal form
with respect to the basis {ϕi |1 � i � 6}. More specifically,
there are three 2 × 2 blocks corresponding to the three pairs,
and each block has trace unity. In a generic case without
degeneracy between the eigenvalues, we then must have

span{ϕ1,ϕ6} = span{φP 1,φ7−P 1}, (52a)

span{ϕ2,ϕ5} = span{φP 2,φ7−P 2}, (52b)

span{ϕ3,ϕ4} = span{φP 3,φ7−P 3}, (52c)

for some permutation P ∈ S3. This means the optimal Slater
approximation can also be expressed in terms of the orbitals
ϕi as

(α1ϕ1 + β1ϕ6) ∧ (α2ϕ2 + β2ϕ5) ∧ (α3ϕ3 + β3ϕ4). (53)

The problem is then to maximize the magnitude of

〈�|S〉 = A∗
0α1α2α3 + A∗

1α1α2β3 − A∗
2α1β2α3

−A∗
3α1β2β3 + A∗

4β1α2α3 + A∗
5β1α2β3

−A∗
6β1β2α3 − A∗

7β1β2β3, (54)

under the condition |αi |2 + |βi |2 = 1.

V. APPLICATION OF HADAMARD INEQUALITY

Neither (30) nor (53) are useful in case of degeneracy,
because it is unclear what specific natural orbitals one should
take. For example, for the state

� = 1√
3

(ϕ1 ∧ ϕ2 ∧ ϕ4 + ϕ1 ∧ ϕ5 ∧ ϕ3 + ϕ6 ∧ ϕ2 ∧ ϕ3),

(55)

{ϕ1,ϕ2,ϕ3} are degenerate with occupation of 2/3, and
{ϕ4,ϕ5,ϕ6} are degenerate with occupation of 1/3. If one takes
the ansatz as

(α1ϕ1 + β1ϕ4) ∧ (α2ϕ2 + β2ϕ6) ∧ (α3ϕ3 + β3ϕ5), (56)

one always gets 〈S|�〉 = 0.
There is a method based on the Hadamard inequality

[42] to determine Imax and construct the optimal Slater
approximation of �. Let S = φ1 ∧ φ2 ∧ φ3 be the optimal
Slater approximation, with the orthonormal orbitals φi related
to ϕj by a 3 × 6 matrix M , i.e.,

φi =
6∑

j=1

Mijϕj . (57)

Apparently, M should satisfy the condition MM† = I3×3, with
I3×3 being the 3 × 3 identity matrix. We have

〈�|S〉 = 1√
3

(det M[124] + det M[623] + det M[153]), (58)

where M[ijk] denotes the 3 × 3 matrix composed of columns i,
j , k of M . Now by the Hadamard inequality for the determinant
of a matrix, we have

|〈�|S〉| � 1√
3

(| det M[124]| + | det M[623]| + | det M[153]|)

� 1√
3

(a1a2a4 + a2a3a6 + a1a3a5), (59)

where ai is the norm of the ith column of M . They must
satisfy the conditions 0 � ai � 1 and

∑6
i=1 a2

i = 3. Now
by using the Cauchy-Schwarz inequality and the arithmetic
mean–geometric mean inequality, we have

a1a2a4 + a2a3a6 + a1a3a5

�
√

a2
1a

2
2 + a2

2a
2
3 + a2

1a
2
3

√
a2

4 + a2
5 + a2

6

�
√

1

3

(
a2

1 + a2
2 + a2

3

)2(
3 − a2

1 − a2
2 − a2

3

)

=
√

1

6

(
a2

1 + a2
2 + a2

3

)2(
6 − 2a2

1 − 2a2
2 − 2a2

3

)

� 2√
3
. (60)

The equalities are achieved when and only when a1 = a2 =
a3 = √

2/3 and a4 = a5 = a6 = √
1/3. By (59), we thus get

|〈�|S〉| � 2/3. Now fortunately, the equalities in (59) can all
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be satisfied if one takes

M =

⎛
⎜⎜⎜⎝

√
2
3 0 0 0 0

√
1
3eiθ

0
√

2
3 0 0

√
1
3eiθ 0

0 0
√

2
3

√
1
3eiθ 0 0

⎞
⎟⎟⎟⎠,

(61)

with θ ∈ R being arbitrary. Therefore, we have

Imax(�; 3) = 4
9 , (62)

and the optimal Slater approximation is

(αϕ1 + βϕ6) ∧ (αϕ2 + βϕ5) ∧ (αϕ3 + βϕ4), (63)

with α = √
2/3 and β = √

1/3eiθ . We note that as proven by
Chen et al. [38], 4/9 is the minimum value achievable by Imax

for three fermions in six orbitals.
Similarly, by using the Hadamard inequality, we can show

that for

� = 1
2 [ϕ1 ∧ ϕ2 ∧ ϕ3 + ϕ1 ∧ ϕ5 ∧ ϕ4

+ϕ6 ∧ ϕ5 ∧ ϕ3 + ϕ6 ∧ ϕ2 ∧ ϕ4], (64)

Imax(�; 3) = 1/2, and the optimal Slater approximation is in
the form of (63), with α = β = 1/

√
2. For the cyclic state

� = 1√
6

[ϕ1 ∧ ϕ2 ∧ ϕ3 + ϕ2 ∧ ϕ3 ∧ ϕ4 + ϕ3 ∧ ϕ4 ∧ ϕ5

+ϕ4 ∧ ϕ5 ∧ ϕ6 + ϕ5 ∧ ϕ6 ∧ ϕ1 + ϕ6 ∧ ϕ1 ∧ ϕ2], (65)

Imax(�; 3) = 3/4, and the optimal Slater approximation is

(αϕ1 + βϕ4) ∧ (αϕ2 + βϕ5) ∧ (αϕ3 + βϕ6), (66)

with α = β = 1/
√

2.
The Hadamard inequality can actually be employed to solve

Examples 1, 2, and 3 in Sec. III too. For example, consider the
GHZ-type state in (25) with |a| > |b|. Let

φi =
2N∑
j=1

Mijϕj , 1 � i � N (67)

be the N orthonormal orbitals supporting the optimal Slater
approximation S. Let M1 and M2 be the N × N matrices
formed by the first and the last N columns of M , respectively,
and let ci and di be the norm of the ith row of M1 and M2,
respectively. We have c2

i + d2
i = 1, and

|〈�|S〉| � |a|c1c2 · · · cN + |b|d1d2 · · · dN

� |a|(c1c2 · · · cN + d1d2 · · · dN )

� |a|(c1c2 + d1d2)

� |a|
√

c2
1 + d2

1

√
c2

2 + d2
2

� |a|. (68)

The equalities are achieved if and only if c1 =
c2 = · · · cN = 1.

VI. CONCLUSIONS AND OUTLOOKS

We have studied analytically the problem of optimally
approximating a fermionic wave function by a Slater deter-
minant. It is a continuation of the work in Ref. [29], where
a numerical algorithm was proposed and the problem in the
N = 2 case was solved. This problem is of significance in both
physics and mathematics. Physically, it provides a geometric
measure of entanglement between the fermions, with identical
particles treated identically. Mathematically, it is about the
geometry of the alternating space ∧NHd equipped with an
inner product. We found that the geometric structure of ∧NHd

is subtle and interesting, as illustrated by the lemmas in the
general case, and the proposition on the structure of the optimal
Slater approximation in the special case of (N = 3,d = 6).

Our simple proof of the Borland-Dennis discovery (1a) by
starting from the optimal Slater approximation also exempli-
fies that this notion can play a pivotal role in analyzing the
structure of a fermionic wave function.

We consider our results as tentative in this direction. Many
problems are still open. For example, a question of interest is
the minimum of Imax and its scaling behavior. The significance
of this min-max problem lies in that it characterizes the
complexity of wave functions in ∧NHd as a whole. For a
general value of d and with N = 3, it is easy to prove that
the minimum of Imax is no less than 2/d2, in contrast to the
dimension of ∧3Hd , which scales as d3. But it is unclear
whether the power factor of 2 can be reduced or not.
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