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Quantum synchronization and its connection with other quantum correlations have attracted considerable
attention. Here we present a theoretical scheme to simultaneously represent and significantly enhance the
level of quantum synchronization and entanglement between two indirectly coupled mechanical membranes,
which are coupled to a common optical field within a cavity. By applying a two-tone driving laser with
weighted amplitudes and specific frequencies, both synchronization gauged by Mari’s criterion and entanglement
estimated by logarithmic negativity can be greatly enhanced. We then clarify the relationship between quantum
synchronization and entanglement in detail. Numerical simulation results show that the influence of the
coupling asymmetry G2/G1 on quantum complete synchronization behaves similarly to that on the purity
while the influence of the coupling asymmetry G2/G1 on quantum phase synchronization is more similar to
that on quantum entanglement. Besides, we demonstrate that although quantum synchronization and quantum
entanglement are not directly related, both of them are sensitive to the squeezing parameter and the cooling
effect. Furthermore, it is also shown that detuning the frequencies of two mechanical oscillators can actually help
quantum synchronization and entanglement, which is somewhat similar to the case of quantum synchronization
blockade.
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I. INTRODUCTION

Synchronization phenomena are universal and can be
found extensively in science, nature, engineering, and social
life [1]. Since Huygens first observed the unique phenomenon
of synchronization between two pendulum clocks [2], a large
variety of different contexts about synchronization have been
studied. Nevertheless, only in recent years have people begun
to explore synchronization of quantum systems in the quan-
tum regime. These systems involve cavity quantum electro-
dynamics [3,4], atomic ensembles [5–9], van der Pol oscilla-
tors [10–14], Josephson junction [15,16], and so on. Among
them, the optomechanical system provides an ideal platform
for investigating spontaneous synchronization [17–26] due to
its inherent nonlinear nature. Remarkably, phase synchroniza-
tion of two anharmonic nanomechanical oscillators had been
experimentally implemented and a significant reduction in
the phase noise of oscillators in the synchronized state had
been demonstrated [17], which is key for sensor and clock
applications.

Classical synchronization techniques have several inim-
itable applications like encrypted communications [27],
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frequency stabilization of the powerful generator [28], etc.
Similar to the classic case, the synchronization of quantum
systems in the quantum regime can also serve as a tool in
many applications. For example, the spectral density of a
dissipative qubit can be probed via quantum synchroniza-
tion [29]. However, the laws hidden in quantum synchroniza-
tion are quite different from those in classical synchronization,
which further arouses intense research interest. Noise-induced
classical-to-quantum transitions in optomechanical synchro-
nization have been investigated [30]. Besides, it is counter-
intuitively shown that identical self-oscillators in the deep
quantum regime cannot synchronize, which is called quantum
synchronization blockade and can be observed in circuit quan-
tum electrodynamics [16,31], and detuning their frequencies
can actually help synchronization [31]. Notably, as a kind of
temporal correlation between subsystems, synchronization is
also related to other correlations such as mutual information,
discord, and entanglement [32]. The common ingredient for
the emergence of these features is mutual interaction between
subsystems. Intriguingly, it is demonstrated that classical
synchronization indicates persistent entanglement in isolated
quantum systems [33]. In Ref. [34], the authors identified the
conditions leading to the phenomenon of mutual synchroniza-
tion, showing that the ability of the system to synchronize is
related to the existence of disparate decay rates and accom-
panied by robust quantum discord and mutual information
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between oscillators. Another work [35] showed that while
both the quantum mutual information and the presence of
entanglement appear to reproduce the Arnold tongue, they do
not provide a conclusive measure of synchronization.

The advantages of the optomechanical system, such as
having a wide range of parameters and enabling presentation
of phenomena of both classical and quantum systems [36],
promote the development of entanglement and synchroniza-
tion. Many theoretical schemes [37–53] have shown that en-
tanglement can be enhanced by suitably modulating a driving
laser or combining with a dissipative regime. Very recently,
entanglement and nonclassical correlations [54,55] between
remote mechanical systems comprised of billions of atoms
have been experimentally realized. Hence, people naturally
think about whether the modulation and dissipative regime
can be used to enhance the level of quantum synchronization
or other types of quantum correlations. Preliminary explo-
rations indicate that quantum synchronization can indeed be
enhanced by a proper periodic modification [56,57]. Besides,
quantum synchronization can also be enhanced by driving a
self-sustained oscillator with a squeezing Hamiltonian instead
of a harmonic drive [58]. However, it is still difficult to grasp
the essence of these correlations.

In this paper, we further clarify the relationship between
quantum synchronization and entanglement in a dissipative
optomechanical system. By applying a two-tone driving laser
with weighted amplitudes and specific frequencies, both the
level of synchronization measured by Mari’s criterion and
entanglement estimated by logarithmic negativity can be rep-
resented simultaneously and greatly enhanced. Although the
stationary state of two mechanical resonators can possess
a maximum amount of complete or phase synchronization
without being necessarily entangled, which has been pointed
out by previous studies [22,24], there is a certain interplay
between synchronization and entanglement. Based on these
consequences, a richer connection between quantum synchro-
nization and quantum entanglement can be obtained. Numeri-
cal simulation results show that the curve of quantum com-
plete synchronization with the coupling asymmetry G2/G1

as a variable is similar to that of the purity while the varia-
tion trends with the coupling asymmetry G2/G1 of quantum
phase synchronization and entanglement are alike. Besides,
we demonstrate that although quantum synchronization and
quantum entanglement are not directly related, both of them
are sensitive to the squeezing parameter and the cooling effect.
In other words, both squeezing and cooling effects can en-
hance quantum complete synchronization and quantum phase
synchronization as well as quantum entanglement. Further-
more, detuning the frequencies of two mechanical oscillators
can actually help synchronization and entanglement, which is
somewhat similar to the situation of quantum synchronization
blockade [16,31].

II. THEORETICAL MODEL

The system is depicted in Fig. 1 where two dielectric
membranes acting as two mechanical oscillators are placed
within an optical cavity driven by a laser with frequency ωL

and time-modulated amplitude E (t ). The Hamiltonian (in a
frame rotating with the laser frequency ωL) of the system can

FIG. 1. Schematic representation of the system. Two dielectric
membranes acting as two mechanical oscillators are placed within
an optical cavity, which is driven by an amplitude-modulated laser
E (t ).

be written as follows (h̄ = 1):

H = �A†A +
∑
j=1,2

[
� j

2

(
P2

j + Q2
j

) + gA†AQj

]

+ iE (t )A† − iE∗(t )A. (1)

Here, � = ωc − ωL denotes the cavity mode detuning, A†

(A) refers to the creation (annihilation) operator of the cavity
mode with frequency ωc and decay rate κ , and Qj (Pj) rep-
resents the dimensionless position (momentum) operator of
the jth mechanical oscillator with frequency � j and damping
rate γ j . The optomechanical coupling constant g is assumed
to be real and the same for both mechanical oscillators for
simplicity.

The dissipative dynamics of the system can be described
by a set of nonlinear quantum Langevin equations (QLEs):

Ȧ = −(κ + i�)A − igA(Q1 + Q2) + E (t ) +
√

2κain(t ),

(2a)

Q̇ j = � jPj, (2b)

Ṗj = −� jQ j − gA†A − γ jPj + ξ j (t ), (2c)

where ain(t ) is the vacuum input noise operator, with the only
nonzero correlation function [59]

〈ain(t )ain†(t ′)〉 = δ(t − t ′). (3)

The correlation function of the zero-mean Brownian motion
noise operator ξ j (t ) in the case of the large mechanical qual-
ity Q j = � j/γ j � 1 can be approximately described by the
Markovian process and satisfies [60]

〈ξ j (t )ξ j (t
′) + ξ j (t

′)ξ j (t )〉/2 = γ j (2nth + 1)δ(t − t ′), (4)

where nth = [exp(h̄� j/kBT ) − 1]−1 is the mean thermal
phonon number at the environmental temperature T .

When the system is strongly driven to a large classi-
cal mean value, the standard linearization technique can be
adopted and each Heisenberg operator can be properly de-
scribed as O = 〈O(t )〉 + o(t ) [O(o) = Qj (q j ), Pj (p j ), A(a)],
where 〈O(t )〉 represents the classical c-number mean value
and o(t ) denotes quantum fluctuation around the classical
mean value. By substituting O = 〈O(t )〉 + o(t ) into Eq. (2),
we obtain the following differential equations for the classical
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mean values:

˙〈A〉 = −(κ + i�)〈A〉 − ig〈A〉(〈Q1〉 + 〈Q2〉) + E (t ), (5a)

˙〈Qj〉 = � j〈Pj〉, (5b)

˙〈Pj〉 = −� j〈Qj〉 − γ j〈Pj〉 − g〈A〉∗〈A〉. (5c)

The linearized QLEs for the quantum fluctuations are

ȧ = −(κ + i�)a − ig[〈A〉(q1 + q2) + (〈Q1〉
+ 〈Q2〉)a] +

√
2κain(t ), (6a)

q̇ j = � j p j, (6b)

ṗ j = −� jq j − γ j p j − g(〈A〉∗a + 〈A〉a†) + ξ j (t ), (6c)

and the corresponding linearized system Hamiltonian

H lin = �(t )a†a +
∑
j=1,2

{
� j

2

(
p2

j + q2
j

)

+ [G∗(t )a + G(t )a†]q j

}
, (7)

with the effective detuning �(t ) = � + g(〈Q1〉 + 〈Q2〉) and
effective coupling strength G(t ) = g〈A〉.

III. EFFECTIVE HAMILTONIAN

It is difficult to find an exact solution of the nonlinear
differential Eq. (5) in general. Here we focus on the weak op-
tomechanical coupling regime, i.e., |g/� j | � 1. It is sufficient
to only consider the zero-order term of g for the classical mean
values. In the long-time limit, we have

〈A(t )〉(0) =
∑
l=1,2

El

κ − i(ωl − �)
e−iωl t , (8a)

〈P1〉(0) = 〈P2〉(0) = 0, (8b)

〈Q1〉(0) = 〈Q2〉(0) = 0, (8c)

by applying a two-tone driving laser with weighted amplitudes
and specific frequencies E (t ) = ∑2

l=1 Ele−iwl t . By introduc-
ing the creation and annihilation operators of the mechanical
fluctuation

b j = (q j + ip j )/
√

2, b†
j = (q j − ip j )/

√
2, (9)

Eq. (7) can be rewritten as

H lin 	 �a†a+
∑
j=1,2

{� jb
†
jb j+[G̃∗(t )a + G̃(t )a†](b j + b†

j )},

(10)

where the effective coupling of the zero-order approximation
is

G̃(t ) =
∑
l=1,2

Gle
−iωl t (11)

with Gl = gEl/{
√

2[κ − i(ωl − �)]} (assumed to be real in
the following). In the interaction picture of �a†a + (�1 −
δ)b†

1b1 + (�2 + δ)b†
2b2, Eq. (10) is transformed into

H lin = δ(b†
1b1 − b†

2b2) + [G̃∗(t )ae−i�t + G̃(t )a†ei�t ]

× [b1e−i(�1−δ)t + b2e−i(�2+δ)t + H.c.]. (12)

If we set δ = (�1 − �2)/2, w1 = � − (�1 + �2)/2, and
w2 = � + (�1 + �2)/2, one can find that H lin is composed
of resonant and nonresonant interacting terms

H lin = δ(b†
1b1 − b†

2b2) + [G1a(b†
1 + b†

2)

+ G2a(b1 + b2) + H.c.]

+ [G1a(b1 + b2)e−i(�1+�2 )t

+ G2a(b†
1 + b†

2)ei(�1+�2 )t + H.c.]. (13)

When the condition �1 + �2 � G1, G2 is satisfied, we can
neglect the fast oscillating terms under the rotating-wave
approximation to get an effective Hamiltonian

H lin = δ(β†
1β1 − β

†
2β2) + [χa(β†

1 + β
†
2 ) + H.c.], (14)

where the Bogoliubov modes β1 and β2 are, separately, uni-
tary transformations of b1 and b2 with a two-mode squeezing
operator s(r), i.e.,

β1 = s(r)b1s†(r) = b1 cosh r + b†
2 sinh r, (15a)

β2 = s(r)b2s†(r) = b2 cosh r + b†
1 sinh r, (15b)

χ =
√

G2
1 − G2

2 represents the effective coupling between the
Bogoliubov mode and the cavity mode (we have assumed
G2 < G1 to ensure stability), and s(r) = exp[r(b1b2 − b†

1b†
2)]

with the squeezing parameter r = tanh−1(G2/G1). In terms of
the sum mode and the difference mode of Bogoliubov modes

βsum = (β1 + β2)/
√

2, βdiff = (β1 − β2)/
√

2, (16)

Eq. (14) becomes

H lin = δβ†
sumβdiff +

√
2χβ†

suma + H.c. (17)

As shown in Refs. [41,52,55], the dissipative dynamics of
the cavity mode can be used to cool the Bogoliubov modes
towards their joint ground state, which is in fact a two-mode
squeezed state of the mechanical oscillators.

IV. QUANTUM SYNCHRONIZATION
AND CORRELATIONS

The quantum statistical properties of the system can be
obtained through the fluctuations of the operators around the
mean values. The fact that the dynamics of the system is
governed by a linearized Hamiltonian ensures that the evolved
states are Gaussian states, whose properties are fully repre-
sented by a 6 × 6 covariance matrix (CM) σ with components
defined as [61]

σm,n = 〈RmRn + RnRm〉/2. (18)

Here Rn is the nth entry of the vector of quadratures R defined
by

R = [qa, pa, q1, p1, q2, p2]T , (19)

and the position and momentum quadratures of the bosonic
modes (h ∈ {a, ain}) are

qh = (h + h†)/
√

2, ph = (h − h†)/(i
√

2). (20)

By further introducing the column vector of input noises

N (t ) = (
√

2κqain (t ),
√

2κ pain (t ), 0, ξ1(t ), 0, ξ2(t ))T, (21)
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the corresponding dynamical linearized QLEs in Eq. (6) can be expressed in a compact matrix form as

Ṙ = M(t )R + N (t ) (22)

with

M(t ) =

⎛
⎜⎜⎜⎜⎜⎜⎝

−κ �(t )
√

2GI(t ) 0
√

2GI(t ) 0
−�(t ) −κ −√

2GR(t ) 0 −√
2GR(t ) 0

0 0 0 �1 0 0
−√

2GR(t ) −√
2GI(t ) −�1 −γ1 0 0

0 0 0 0 0 �2

−√
2GR(t ) −√

2GI(t ) 0 0 −�2 −γ2

⎞
⎟⎟⎟⎟⎟⎟⎠

, (23)

where GR and GI are respectively real and imaginary parts of
the effective coupling coefficient G(t ) in Eq. (7). Since the
system is linearized, the evolved states will remain Gaussian
and the QLEs in Eq. (6) are equivalent to the equation of
motion for the CM. From Eqs. (3), (4), (18), and (22), we can
derive a linear differential equation for the CM [37],

σ̇ (t ) = M(t )σ (t ) + σ (t )M(t )T + D, (24)

where D is a diffusion matrix whose components are associ-
ated with the noise correlation functions and defined as

δ(t − t ′)Dm,l = 〈Nm(t )N†
l (t ′) + N†

l (t ′)Nm(t )〉2. (25)

Here Nl is the lth entry of the vector N . One can deduce from
Eqs. (3) and (4)

D = diag(κ, κ, 0, γ1(2nth + 1), 0, γ2(2nth + 1)). (26)

Note that the general stability conditions of the linear differ-
ential Eqs. (22) or (24) are determined by the corresponding
homogeneous equation

Ṙ = M(t )R, (27)

which is fully characterized by the time-periodic coefficient
matrix M(t ). Based on Floquet’s theorem [62], the solutions of
Eq. (22) or Eq. (24) are stable if all Floquet multipliers satisfy
|λ j | < 1. Here, λ j is the jth eigenvalue of 
 = �−1(0)�(T )
and �(t ) is a principal matrix solution of Eq. (27). For the
special case of a time-independent coefficient matrix M =
M(t = 0) under the rotating-wave approximation, i.e., omit-
ting all nonresonant terms in Eq. (13) or all time-dependent
terms in Eq. (23), the stability requirements can be readily
inferred from the eigenvalues of the time-independent coef-
ficient matrix M, where the system is stable provided that
all eigenvalues of M have negative real parts [63]. In the
following, the stability conditions will be carefully checked
in all simulations throughout this paper.

For two-mode Gaussian states of two mechanical res-
onators b1 and b2, it is convenient to use Mari’s criterion [22]
as a measurement of the quantum synchronization. As for
quantum entanglement, we use the logarithmic negativity
EN [64,65] to gauge its level. All the above measures can be
computed from the reduced 4 × 4 CM σr (t ) for b1 and b2,

σr (t ) =
(

σ1 σc

σ T
c σ2

)
, (28)

where σ1, σ2, and σc are 2 × 2 sub-block matrices of σr (t ).
The entanglement is then calculated by

EN = max[0,− ln(2η)] (29)

with

η ≡ 2−1/2{�− − [�2
− − 4I4]1/2}1/2 (30)

and

�− ≡ I1 + I2 − 2I3, (31)

where I1 = det σ1, I2 = det σ2, I3 = det σc, and I4 = det σr are
symplectic invariants. The purity of a two-mode Gaussian
state is simply given by

μ = 1/(4
√

I4). (32)

As proposed by Mari et al. [22], the relative measure of
quantum complete synchronization can be expressed as

Sc(t ) = 〈q−(t )2 + p−(t )2〉−1, (33)

where

q−(t ) = [q1(t ) − q2(t )]/
√

2, (34a)

p−(t ) = [p1(t ) − p2(t )]/
√

2. (34b)

The measure of quantum phase synchronization can be
obtained through the quantity

Sp(t ) = 1
2 〈p′

−(t )2〉−1 (35)

with

p′
−(t ) = [p′

1(t ) − p′
2(t )]/

√
2 (36)

and

q′
j (t ) = q j cos ϕ j + p j sin ϕ j, (37a)

p′
j (t ) = p j cos ϕ j − q j sin ϕ j, (37b)

where the phase ϕ j = arctan[〈Pj (t )〉/〈Qj (t )〉].

V. NUMERICAL RESULTS AND DISCUSSION

Figure 2 displays the peak values of the mechanical cor-
relations and purity for each time period in the long-time
limit as functions of the coupling asymmetry G2/G1 for
different δ. All numerical results are obtained by solving the
full linearized QLEs for the quantum fluctuations Eq. (6)
[or equally the linear differential Eq. (24) for the CM] in-
cluding the nonresonant terms. To do this, we need to first
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FIG. 2. Maximum mechanical correlations and purity for each
time period in the asymptotic regime as functions of the coupling
asymmetry G2/G1 for different δ. The parameters are κ/�1 = 0.05,
γ /�1 = 5 × 10−6, �/�1 = −1, g/�1 = 1 × 10−5, G1/�1 = 0.03,
and nth = 10.

numerically integrate the differential Eq. (5) by applying a
two-tone driving laser with weighted amplitudes and specific
frequencies E (t ) = ∑2

l=1 Ele−iwl t to get the time-dependent
mean values for Eqs. (6) and (7). Apparently, the mechanical
correlations are nonmonotonic functions of G2/G1 in most
sets of parameters and take a maximum for a specific G2/G1.
The increase of the coupling asymmetry G2/G1 has two
competing effects. On the one hand, it can increase the squeez-
ing parameter r = tanh−1(G2/G1) of the two-mode squeezed
thermal state. On the other hand, it will reduce the effective

coupling χ =
√

G2
1 − G2

2 between the sum mode βsum and the
cavity mode a, which is harmful for the cooling effect. As
is well known, both the squeezing parameter and the cooling
effect play an important role in the generation of various
kinds of quantum correlations, but their influences on diverse
kinds of quantum correlations are different. From Fig. 2, one
can find that the achievable quantum correlations are also
dependent on δ, which is the effective coupling between the
sum mode βsum and the difference mode βdiff and induces the
cooling process of βdiff. The combined cooling effect has been
previously studied in Refs. [41,52,55] and used to generate
highly pure and strong cavity-mechanical entanglement [52].
By optimizing the coupling asymmetry G2/G1 and the ef-
fective coupling δ, the first-rank quantum correlations can be
obtained. The tendency towards spontaneous synchronization
or entanglement is the weakest if the natural frequencies
of the two mechanical oscillators are as close as possible
(corresponding to δ = 0), which is contrary to the classic case.
The result is similar to that of the quantum synchronization
blockade [16,31], in which identical self-oscillators cannot
synchronize and detuning their frequencies is conducive ac-
tually to synchronization. However, the fundamental physical
mechanisms of these two cases are different. The appearance
of the quantum synchronization blockade is due to energy
quantization and energy conservation while the reason for our
scheme is that the difference mode βdiff cannot be effectively

cooled in the case of δ = 0. Besides, all other measures of
quantum correlation except for quantum entanglement are
not exactly zero when the natural frequencies of the two
mechanical oscillators are identical.

Noticeably, by comparing Fig. 2(a) with Fig. 2(b), one can
find that the curves of EN are very similar to that of quantum
phase synchronization Sp, especially when the parameter δ is
large enough. In this case, they have similar dependency on
the squeezing parameter and the cooling effect. If δ is very
small but not exactly zero (e.g., δ = 0.0005�1), the tendency
of quantum phase synchronization Sp becomes more complex.
In addition, the peak of phase synchronization Sp occurs in a
larger ratio of G2/G1. As was already pointed out in Ref. [52],
for different sets of parameters G2 and G1, one expects some
moderate values of δ that correspond to maximum entangle-
ment and purity. That is to say, the smaller the parameter δ

is, the smaller the optimal coupling χ =
√

G2
1 − G2

2 (i.e., the
larger the ratio G2/G1) is. This conclusion is also suitable
to quantum phase synchronization. In fact, apart from the
competition between squeezing and the combined cooling
effect of the sum mode βsum and the difference mode βdiff,
the competing of the cooling effect between two Bogoliubov
modes also exists. The best value is obtained when all the
competing effects balance.

Figure 2(c) shows that both curves of quantum complete
synchronization for δ = 0.05�1 and δ = 0.005�1 almost
overlap and drop rapidly as the ratio G2/G1 grows, which
means that both the sum mode βsum and the difference mode
βdiff can be effectively cooled via the dissipative dynamics of
the cavity mode a under the conditions of large δ and small
G2/G1. In other words, the impact of the cooling effect on
quantum complete synchronization is much larger than that
of squeezing. Therefore, the enhancement effect of quantum
complete synchronization induced by squeezing becomes ob-
vious only when the cooling effect is weak enough.

Figure 2(d) reveals that the purity for large δ is inversely
correlated to G2/G1 and the curves for small δ are very similar
to that of quantum complete synchronization. Clearly, under
the circumstance of large δ, one can keep the high purity
of steady states over a wide range of G2/G1, which means
the combined cooling effect on the sum mode βsum and the
difference mode βdiff can tremendously maintain large purity
even if the mean thermal phonon number is not small. If δ

is very small, i.e., the coupling between the sum mode βsum

and the difference mode βdiff is small, the enlargement of
the ratio G2/G1 can only increase the squeezing parameter
r = tanh−1(G2/G1) but decreases the coupling between the
sum mode βsum and the cavity mode a. As long as the cooling
effect on the sum mode βsum is not very small, enlargement
of the squeezing parameter can increase the purity. However,
the sum mode βsum cannot be effectively cooled when the
ratio G2/G1 is large enough. Hence, the purity falls off due
to the sensitivity to the environmental temperature. The same
principle can explain the result of quantum complete synchro-
nization for small δ.

To gain more insights about the dynamics, we respectively
plot the time evolutions of different mechanical quantum
correlations and purity in Fig. 3 when all mechanical and
cavity modes are initially in thermal equilibrium with their
baths. The results are numerically evaluated with the full
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FIG. 3. Time evolutions of different mechanical correla-
tions and purity. The parameters are κ/�1 = 0.05, γ /�1 = 5 ×
10−6, �/�1 = −1, g/�1 = 1 × 10−5, G1/�1 = 0.03, G2 = 0.4G1,
δ/�1 = 0.005, and nth = 10.

linearized Hamiltonian in Eq. (7). Figure 3(a) shows that there
is no entanglement until the Bogoliubov modes β1 and β2

have been sufficiently cooled after some time. Nevertheless,
the quantum state of two mechanical resonators can possess a
certain amount of quantum correlations (e.g., quantum com-
plete synchronization) without being necessarily entangled.
Then, following a dramatic increase, all measures of quan-
tum correlation and purity tend to be saturated with small
vibrations [see Fig. 3(c)] which derive from the effects of
nonresonant terms. Comparing Figs. 3(a) and 3(b), one notes
that the dynamics of quantum phase synchronization is quite
different from that of other quantum correlation. After the
first saturation with small vibrations [roughly speaking �1t ∈
(250, 1500)], the measure of quantum phase synchronization

dramatically increases again and then becomes saturation with
large vibrations finally [see the inset of Fig. 3(b)]. Although
they have different dynamical evolution, all measures of
quantum correlation will reach a relatively large value and
oscillate with the same period in the long-time limit. As a
consequence, the level of all kinds of quantum correlation
can be significantly enhanced and simultaneously represented,
which provides richer phenomena and better understanding on
the relationship among these different quantum correlations.

VI. CONCLUSIONS

In summary, we have systematically explored quantum
synchronization and its connection with other quantum cor-
relations in a dissipative three-mode optomechanical system.
The results show that combinations of the modulation and
the dissipation regime can significantly enhance the level of
several different kinds of quantum correlations (including
quantum synchronization) between two indirectly coupled
mechanical oscillators. Based on these consequences, we
clarify the relationship between quantum synchronization and
entanglement. Then, we demonstrate that the influence of the
coupling asymmetry G2/G1 on quantum complete synchro-
nization behaves similarly to that on the purity while the in-
fluence of the coupling asymmetry G2/G1 on quantum phase
synchronization is more similar to that on quantum entangle-
ment. Generally, synchronization is certainly associated with
entanglement although complete or phase synchronization can
exist without entanglement when the Bogoliubov modes β1

and β2 have not been sufficiently cooled. Besides, the ten-
dency towards spontaneous synchronization or entanglement
is the weakest when the natural frequencies of two mechanical
oscillators are as close as possible. Numerical simulation
results show that both squeezing and the combined cooling
effects can enhance quantum complete synchronization and
quantum phase synchronization as well as quantum entangle-
ment. However, they have different impressions on diverse
kinds of quantum correlations. The underlying physical mech-
anism is that there are two different competing relationships:
one is the competition between squeezing and the combined
cooling effect of the sum mode βsum and the difference mode
βdiff; the other is the competing of the cooling effect between
two Bogoliubov modes. The best value is obtained when all
the competing effects balance. Therefore, our study provides
a better understanding on the relation among these different
quantum correlations.
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