Journal of Materials Chemistry A

View Article Online

PAPER

Cite this: DOI: 10.1039/c9ta05299b

Received 19th May 2019 Accepted 16th June 2019

DOI: 10.1039/c9ta05299b

rsc.li/materials-a

1. Introduction

Sodium-ion batteries (SIBs) were initially deemed to be an alternative energy storage device to innovate lithium-ion batteries primarily due to the abundance of sodium resources. In recent years, several studies have indicated that sodium-ion batteries may even have comparable energy and power density to lithium-ion batteries when suitable cathode and anode materials are used.^{1,2} However, the radius of Na⁺ (1.02 Å) is obviously larger than that of Li⁺ (0.76 Å), which complicates the development of applicable anode materials for sodium-ion energy-storage systems.^{3–5} Anode materials, an important part of SIBs, have achieved significant progress in the past few years; however, applicable host materials for SIBs are still limited.^{6–9} To date, various anode materials, including hard carbon,^{10,11}

An interlayer defect promoting the doping of the phosphate group into TiO₂(B) nanowires with unusual structure properties towards ultra-fast and ultra-stable sodium storage[†]

Meiling Kang,‡^a Yurong Ruan,‡^a Yanzhong Lu,‡^a Lan Luo,^a Jinxian Huang,^a Jian-Min Zhang^b *^a and Zhensheng Hong^b *^{ab}

Heteroatom doping is an effective way to modulate the local structure of TiO₂-based materials, enabling enhanced electrochemical performance. However, current studies generally adopt a single atom doping strategy, and ionic group doping has rarely been achieved and is a distinctly bigger challenge. Herein, doping of the phosphate group at high concentrations into blue TiO₂(B) nanowires is proposed and realized for the first time by skillfully utilizing the defects induced during the dehydration and topology transformation process of the H-titanate precursor; based on experimental characterization and firstprinciples calculations, it has been demonstrated that this material possesses exceptional electrical properties, a remarkably reduced band gap, magnetic characteristic from the extra electrons outside the Ti atomic nucleus and remarkable phase stability. Benefiting from the unusual structure properties, phosphate-doped TiO₂(B) exhibits the ultra-fast sodium storage capability of 124 mA h g⁻¹ at the extremely high rate of 50 A g⁻¹ and excellent long cycling stability even at 10 A g⁻¹ after 5000 cycles. Moreover, this electrode material was tested at low temperatures and exhibited comparable reversible capacity and outstanding cycling stability to those at normal temperatures. We also assembled a B– TiO₂(B)–P//(NVPF) full cell, which delivered the maximum energy density of 170 Wh kg⁻¹ and the maximum power density of 5000 W kg⁻¹.

metal alloys (Sb^{12,13} and Sn^{14,15}), conversion materials¹⁶⁻¹⁸ and titanium-based insertion-type materials,^{19–21} have been explored for SIBs. Titanium dioxide (TiO₂) has attracted widespread interest as the SIB anode because of its low cost, nontoxicity, stable structure and reasonable operation voltage ($\approx 0.7 \text{ V} \nu s$. Na), avoiding dangerous Na plating.^{19,20,22} TiO₂ has also wide applications in photocatalysis,^{23,24} perovskite solar cells²⁵ and SERS sensing.²⁶

Several stable or metastable phases of TiO₂, commonly including rutile TiO₂, anatase TiO₂ and bronze TiO₂ (TiO₂(B)), have been reported. All TiO₂ polymorphs consist of TiO₆ octahedra attached with corners or edges. Their insertion process is based on the Ti⁴⁺/Ti³⁺ redox pair that usually occurs at a moderate potential, usually at 0.6–0.9 V ν s. Na/Na⁺ depending on the polymorph.^{27,28} Especially, TiO₂(B), a metastable phase of TiO₂, has an array of open tunnels along the [010] direction; this means that theoretically, it can accommodate Na⁺ ions more easily and allow faster Na-ion transport than the other TiO₂ polymorphs.^{29,30} This structural characteristic also induces more open voids than the cases of anatase and rutile phases, and thus, TiO₂(B) is a suitable anode material for metal-ion insertion;²⁷ however, owing to the inefficient ion conductivity and poor electronic property, the sodium storage performance

[&]quot;Fujian Provincial Key Laboratory of Quantum Manipulation and New Energy Materials, College of Physics and Energy, Fujian Normal University, Fuzhou, Fujian 350117, China. E-mail: jmzhang@fjnu.edu.cn; winter0514@163.com

^bFujian Provincial Collaborative Innovation Center for Optoelectronic Semiconductors and Efficient Devices, Xiamen, 361005, China

[†] Electronic supplementary information (ESI) available. See DOI: 10.1039/c9ta05299b

[‡] These authors contributed equally to this work.