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Controlling one-way quantum steering in a modulated optomechanical system
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We investigate in detail the properties of the stationary quantum steering of two mechanical modes, where
the two mechanical modes interact with two coupling cavity modes, and two four-tone driving lasers are used to
pump the two cavity modes. By controlling the pumping lasers, the two cavity modes can act as two engineered
reservoirs to cool the two mechanical modes to a squeezed state. When the damping rates of the two mechanical
modes are different, numerical simulation results show that there are parameter regions where the state of the
two mechanical modes only has one-way quantum steering, which is the most prominent feature of quantum
steering from quantum entanglement.
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I. INTRODUCTION

The well-known Einstein-Podolsky-Rosen (EPR) paradox
was proposed in a seminal paper to question the completeness
of quantum mechanics [1]. Subsequently, Schrödinger intro-
duced the term “entanglement” to discuss the EPR paradox,
which implies the existence of steering [2,3].

The steering is intrinsically distinct from quantum entan-
glement and Bell nonlocality for it has asymmetric character-
istics between the parties involved. Recently, Wiseman et al.
proved with Werner states and isotropic states that the steering
is a nonclassical correlation, stronger than entanglement but
weaker than Bell nonlocality [4]. A lot of work is devoted to
improving our understanding on quantum steering by giving
qualitative judge criteria to decide whether a quantum state
is steerable [5–9] or quantifying the steerability of a given
quantum state [10,11]. Apart from its fundamental physical
significance, the quantum steering has important practical
applications, such as the quantum subchannel discrimination
problem [12], and high-fidelity heralded teleportation using
minimally entangled yet steerable resources [13]. Remark-
ably, the genuine one-way steering, which is the most promi-
nent feature of steering, has been experimentally observed
[14–20].

The steerable states of macroscopic and massive objects
can be used for testing the fundamental principles of quantum
mechanics and implementing quantum information process-
ing, and much work has been devoted to finding effective
ways to achieve these goals in cavity optomechanical systems
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[21–28]. The related works include the generation of quan-
tum steering between a mechanical oscillator and an optical
pulse [21,23] or between two massive mirrors [25], and the
generation of hybrid atom-mechanical quantum steering in
the steady-state regime [22,26]. In addition, one-way quantum
steering between two electromagnetic fields mediated by a
mechanical oscillator [24] or between the intracavity field and
the mechanical oscillator [27] is also investigated.

It is noted that much progress has been made in the
preparation of macroscopic entangled states in cavity op-
tomechanical systems. Moreover, it is worth emphasizing that
an experimental demonstration of entanglement between two
macroscopic-scale mechanical oscillators has been realized
[29] which is based on a series of proposals for using reservoir
engineering [30–35]. The entanglement obtained by reservoir
engineering can be significantly larger than that with other
methods, and the method of reservoir engineering does not
depend on the initial states. These advantages motivate us to
consider reservoir-engineered quantum steering generation in
cavity optomechanical systems.

Here, we propose a scheme for achieving steady-state one-
way quantum steering between two mechanical oscillators. In
the scheme two four-tone driving lasers are used to excite two
coupling cavity modes which interact with two mechanical
modes, respectively. By selecting appropriate driving lasers
and mechanical damping rates, one-way quantum steering be-
tween two mechanical modes can be observed. Our method is
a reservoir-engineered one-way quantum steering generation
method. It does not depend on the initial states of the system.
Such an advantage can lower the experimental difficulty, as
demonstrated in entanglement generation. Compared with the
steering generation proposal in Ref. [28], our scheme does not
need additional squeezed light to drive the two cavities.
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FIG. 1. Schematic representation of the system considered. Two
phonon modes B1 and B2 with the same frequency ωm respectively
interact with two photon modes A1 and A2, which in turn are coupled
via the photon tunneling.

This paper is organized as follows. In Sec. II, we introduce
the fundamental model of our proposal. Then we study the
steady-state entanglement and quantum steering between two
mechanical oscillators in Sec. III. Conclusions are given in
Sec. IV.

II. THE MODEL AND EFFECTIVE HAMILTONIAN

The sketch of the system is depicted in Fig. 1. Two phonon
modes, B1 and B2, with the same frequency ωm, respectively
interact with two photon modes A1 and A2, which in turn
are coupled via the photon tunneling. The two mechanical
oscillators are assumed to be symmetrical except with dif-
ferent damping rates, i.e., they have different mechanical
quality factors ωm/γm1 and ωm/γm2. Both cavity modes with
frequency ωc are driven by external lasers with frequency ωL

and time-modulated amplitude E (t ). In a rotating frame with
respect to laser frequency ωL, the system Hamiltonian can be
written as (h̄ = 1)

H =
∑
j=1,2

[�0A†
j A j + ωmB†

j B j − gA†
j A j (Bj + B†

j )

+ iE (t )A†
j − iE (t )∗Aj] + J (A1A†

2+A†
1A2), (1)

where Aj (A†
j ) and Bj (B†

j ) denote the annihilation (creation)
operators of the jth cavity mode and phonon mode, respec-
tively. �0 = ωc − ωL represents the detuning between the
cavity and the driving field. The parameter g is the single-
photon optomechanical coupling coefficient of each optome-
chanical system (assumed to be symmetrical), and J signifies
the strength of photon tunneling.

The system dynamics is described by a set of quantum
Langevin equations (QLEs) [36]:

Ȧ j = −(κ/2 + i�0)Aj − iJA3− j + igA j (Bj + B†
j )

+ E (t ) + √
κain

j (t ), (2a)

Ḃ j = −(γm j/2 + iωm)Bj + igA†
j A j + √

γm jb
in
j (t ), (2b)

where κ is the leakage rate of the cavities, and ain
j (t ) and

bin
j (t ) are independent input vacuum noise operators obeying

the following nonzero autocorrelation functions:〈
ain

j (t )ain†
j (t ′)

〉 = δ(t − t ′), (3a)〈
bin

j (t )bin†
j (t ′)

〉 = (n̄b + 1)δ(t − t ′), (3b)〈
bin†

j (t )bin
j (t ′)

〉 = n̄bδ(t − t ′), (3c)

with n̄b being the mean thermal occupancy of the mechanical
bath.

In the presence of strong external driving pulses, the sys-
tem operators can be written as Aj = α j (t ) + a j and Bj =
β j (t ) + b j , where a j and b j are quantum fluctuation operators
with zero mean values around classical c-number mean ampli-
tudes α j (t ) and β j (t ), respectively. Under the strong coherent
driving regime |α j (t )|, |β j (t )| � 1, by applying standard lin-
earization techniques to Eq. (2), we gain a set of differential
equations for the mean values:

α̇ j (t ) = −(κ/2 + i�0)α j (t ) − iJα3− j (t )

+ igα j (t )[β j (t ) + β j (t )∗] + E (t ), (4a)

β̇ j (t ) = −(γm j/2 + iωm)β j (t ) + ig|α j (t )|2, (4b)

and the linearized QLEs for the quantum fluctuations:

ȧ j = −(κ/2 + i�0)a j − iJa3− j + ig{a j[β j (t ) + β j (t )∗]

+α j (t )(b j + b†j )} + √
κain

j (t ), (5a)

ḃ j = −(γm j/2 + iωm)b j + ig[a†
jα j (t ) + a jα j (t )∗]

+√
γm jb

in
j (t ), (5b)

which correspond to a linearized system Hamiltonian:

H lin =
∑
j=1,2

{� j (t )a†
j a j + ωmb†jb j + [Gj (t )∗a j

+ Gj (t )a†
j ](b

†
j + b j )} + J (a†

1a2 + a†
2a1), (6)

with � j (t ) = �0 − g[β j (t ) + β j (t )∗] and Gj (t ) = −gα j (t )
being the effective detuning and enhanced optomechanical
coupling strength induced by the driving laser, respectively.

It is difficult to find exact solutions of the mean values
in Eq. (4) in general. But when we focus on the weak
optomechanical coupling regime (namely, |g/ωm| � 1) as
well as not much difference of the mean values between the
two subsystems [i.e., α1(t ) � α2(t ) = α(t ), β1(t ) � β2(t ) =
β(t )], approximately analytical solutions for Eq. (4) can be
found by expanding the classical mean values α(t ) and β(t )
in powers of g as [30,31,37]

α(t ) = α(t )(0) + α(t )(1) + α(t )(2) + · · · , (7a)

β(t ) = β(t )(0) + β(t )(1) + β(t )(2) + · · · . (7b)

When two four-tone driving lasers E (t ) = ∑4
l=1 El e−iωl t

are implemented, following the same procedures as Ref. [34],
the asymptotic solutions for time t � 1/κ, 1/γm1, 1/γm2 can
be obtained:

α(t )(0) =
4∑

l=1

αl e
−iωl t , β(t )(0) = 0, (8)
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where

αl = El/[κ/2 + i(�0 + J − ωl )]. (9)

One can further make the approximations α(t ) � α(t )(0)

and �(t ) � �0 in view of α(t )(1) = 0, |α(t )(2)| � |α(t )(0)|,
and |g[β(t ) + β∗(t )]| � �0 ∼ ωm. Then the Hamiltonian of
Eq. (6) in the asymptotic regime becomes

H lin
asy =

∑
j=1,2

{�0a†j a j + ωmb†j b j + [G(t )∗a j + G(t )a†j ](b
†
j + b j )}

+ J (a†1a2 + a†2a1), (10)

where

G(t ) = −gα(t )(0) =
4∑

l=1

Gle
−iωl t (11)

with

Gl = −gαl . (12)

Introducing the new bosonic modes,

c1 = (a1 + a2)/
√

2, c2 = (a1 − a2)/
√

2,

d1 = (b1 + b2)/
√

2, d2 = (b1 − b2)/
√

2, (13)

Eq. (10) becomes

H lin
asy =

∑
j=1,2

{� jc
†
j c j + ωmd†

j d j + [G(t )∗c j + G(t )c†j ]

× (d†
j + d j )}, (14)

where �1 = �0 + J,�2 = �0 − J . In the interaction picture
of � jc

†
j c j + ωmd†

j d j , Eq. (14) can be rewritten as

H int =
∑
j=1,2

[G(t )∗c je
−i� j t + G(t )c†j e

i� j t ]

× (d†
j eiωmt + d je

−iωmt ). (15)

To obtain the targeted Hamiltonian, we select the modulating
frequencies ωl as

ω1 = �0 + J − ωm, (16a)

ω2 = �0 + J + ωm, (16b)

ω3 = �0 − J − ωm, (16c)

ω4 = �0 − J + ωm, (16d)

and then make the rotating-wave approximation by neglecting
all fast oscillating terms under the conditions J > 2ωm and

ωm � Gl to gain the effective Hamiltonian,

Heff � [G1d1 + G2d†
1 ]c†1 + [G3d2 + G4d†

2 ]c†2 + H.c.

= 1

2
[(G1 + G3)b1 + (G1 − G3)b2 + (G2 + G4)b†1

+ (G2 − G4)b†2]a†
1 + 1

2
[(G1 − G3)b1 + (G1 + G3)b2

+ (G2 − G4)b†1 + (G2 + G4)b†2]a†
2 + H.c. (17)

When Gl satisfies

G2 = −G4 = G+, G1 = G3 = G−, |G−| > |G+|, (18)

we finally obtain the following Hamiltonian,

Heff = G̃(θ1a†
1 + θ2a†

2 ) + H.c., (19)

where G̃ =
√

G2
− − G2

+ and the introduced Bogoliubov
modes θ1 and θ2 are unitary transformations of the mechanical
modes b1 and b2 with a two-mode squeezed operator, respec-
tively,

θ1 = S(r)b1S†(r) = b1 cosh r + b†2 sinh r, (20a)

θ2 = S(r)b2S†(r) = b2 cosh r + b†1 sinh r, (20b)

S(r) = exp[r(b1b2 − b†1b†2)], (20c)

r = tanh−1(G+/G−). (20d)

Note that Eq. (19) is a beam-splitter-like Hamiltonian,
which is well known from optomechanical sideband cooling
[38,39]. For the small mechanical damping rate considered
here, the dissipation of the cavity modes a1 and a2 can be
exploited to simultaneously cool the Bogoliubov modes θ1

and θ2 to near ground states after long enough time. The joint
ground state of θ1 and θ2 is a two-mode squeezed vacuum
state of the mechanical modes b1 and b2, which can be readily
checked by

θ j[S(r)|00〉b1b2 ] = S(r)b jS
†(r)S(r)|00〉b1b2 = 0. (21)

In the above analysis, two cavity modes are used as two
engineered reservoirs to cool the two mechanical modes to
a two-mode squeezed state in the stationary limit. The two-
mode squeezed state is an entangled state and has quantum
steering. By selecting different damping rates of the two
mechanical modes, the whole system will be asymmetric, and
it is possible to observe one-way quantum steering. In the next
section, we will confirm the existence of the one-way quantum
steering in the system by numerical simulation.

III. QUANTUM STEERING AND ENTANGLEMENT

In the following, we investigate in detail the properties of
stationary quantum steering and analyze how to obtain one-
way quantum steering by controlling the amplitudes of exter-
nal lasers and choosing an appropriate ratio of two mechanical
damping rates. By introducing the position and momentum
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quadratures for the bosonic operators (o ∈ {a j, b j, ain
j , bin

j }),

qo = (o + o†)/
√

2, po = (o − o†)/(i
√

2), (22)

and the column vectors of all quadratures and noises,

R = (qb1 , pb1 , qb2 , pb2 , qa1 , pa1 , qa2 , pa2 )T , (23a)

N = (√
γm1qbin

1
,
√

γm1 pbin
1
,
√

γm2qbin
2
,
√

γm2 pbin
2
,
√

κqain
1
,

√
κ pain

1
,
√

κqain
2
,
√

κ pain
2

)T
, (23b)

Eq. (5) can be transformed into a more compact form,

Ṙ = MR + N, (24)

with

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

−γm1/2 ωm 0 0 0 0 0 0

−ωm −γm1/2 0 0 −2G1R(t ) −2G1I(t ) 0 0

0 0 −γm2/2 ωm 0 0 0 0

0 0 −ωm −γm2/2 0 0 −2G2R(t ) −2G2I(t )

2G1I(t ) 0 0 0 −κ/2 �1(t ) 0 J

−2G1R(t ) 0 0 0 −�1(t ) −κ/2 −J 0

0 0 2G2I(t ) 0 0 J −κ/2 �2(t )

0 0 −2G2R(t ) 0 −J 0 −�2(t ) −κ/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (25)

where GjR(t ) and GjI (t ) are respectively real and imaginary
parts of the effective coupling constant Gj (t ). Since the
dynamics of the four-mode bosonic system is governed by
a linearized Hamiltonian, the system converges to a time-
dependent Gaussian state when it is stable [40], which is
independent from its initial state. The asymptotic state is
fully described by the covariance matrix (CM) σ with entries
defined as

σ j,l = 〈RjRl + RlRj〉/2, (26)

where Rj is the jth component of the vector R of quadratures.
From Eqs. (3), (23), and (24), a linear differential equation

σ̇ = Mσ + σMT + D (27)

for the CM can be deduced [41], where D is a diffusion
matrix whose components are associated with the input noise
correlation functions in Eq. (3),

Dj,lδ(t − t ′) = 〈Nj (t )Nl (t
′) + Nl (t

′)Nj (t )〉/2. (28)

Actually, one can find that D is diagonal,

D = 1

2
× diag[γm1(2n̄b + 1), γm1(2n̄b + 1), γm2(2n̄b + 1),

γm2(2n̄b + 1), κ, κ, κ, κ]. (29)

In the following, we will utilize Eq. (27) to study the time
evolution of the quantum steering and entanglement of the two
mechanical modes. Note that the coefficient matrix in Eq. (25)
corresponds to the system Hamiltonian in Eq. (6), where
the only approximation is the commonly used linearization
techniques in optomechanics.

For two-mode Gaussian states of the two mechanical res-
onators b1 and b2, a computable criterion of quantum steering
based on the form of quantum coherent information has been
introduced [10]. As for quantum entanglement, it is conve-
nient to use the logarithmic negativity EN to gauge its level
[42,43]. All the above-mentioned measures can be computed
from the reduced 4 × 4 CM σr (t ) for b1 and b2 (i.e., the first

four rows and columns of CM),

σr (t ) =
(

σ1 σc

σ T
c σ2

)
, (30)

where σ1, σ2, and σc are 2 × 2 sub-block matrices of σr (t ).
The entanglement is then calculated by

EN = max[0,− ln(2η)] (31)

with

η ≡ 2−1/2{�− − [�2
− − 4I4]1/2}1/2 (32)

and

�− ≡ I1 + I2 − 2I3, (33)

where I1 = det σ1, I2 = det σ2, I3 = det σc, and I4 = det σr are
the symplectic invariants. The Gaussian b1 → b2 steering is
given by

GA ≡ Gb1→b2 (σr ) = max

[
0,

1

2
ln

I1

4I4

]
, (34)

and a corresponding measure of Gaussian b2 → b1 steerabil-
ity can be obtained by swapping b1 and b2, resulting in an
expression

GB ≡ Gb2→b1 (σr ) = max

[
0,

1

2
ln

I2

4I4

]
. (35)

In order to check the asymmetric steerability of two-mode
Gaussian states, we introduce the steering asymmetry defined
as |GA − GB|.

The numerical results are shown in Figs. 2 and 3. All
results are numerically evaluated with the full linearized QLEs
for the quantum fluctuations Eq. (5) [or equally, the linear
differential Eq. (27) for the CM], including the nonresonant
terms and with all mechanical and cavity modes initially in
thermal equilibrium with their baths. To do this, we first
numerically integrate the differential Eq. (4) by applying two
four-tone driving lasers with weighted amplitudes and specific
frequencies E (t ) = ∑4

l=1 Ele−iwl t to get the time-dependent
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FIG. 2. Maximum mechanical-mechanical entanglement and steering for each time period in the asymptotic regime as functions of the
ratio of the effective coupling G+/G− for different damping rate ratios γm2/γm1: (a) γm2/γm1 = 2, (b) γm2/γm1 = 8, (c) γm2/γm1 = 10, and
(d) γm2/γm1 = 16. The other parameters are κ/ωm = 0.1, γm1/ωm = 1 × 10−4, �/ωm = 4, J/ωm = 3, g/ωm = 1 × 10−5, G−/ωm = 0.03, and
nb = 5.

mean values for Eqs. (5) and (6), using a set of experimentally
achievable parameters [44–47].

Figure 2 displays the peak values of stationary entangle-
ment and steering of the two mechanical modes for each time
period in the long-time limit as functions of the coupling
asymmetry G+/G−, where different mechanical damping rate
ratios γm2/γm1 are used in different subplots. The value
G+/G− determines the squeezed vacuum state that can be
cooled down by using two cavity modes as two engineered
reservoirs [see Eqs. (19) and (20)]. As has been previously
studied in Refs. [31–35], the increase of the coupling asym-
metry G+/G− has two competing effects. On the one hand,
it can increase the squeezing parameter r = tanh−1(G+/G−)
of the two-mode squeezed thermal state. On the other hand,
it will reduce the effective coupling G̃ =

√
G2

− − G2
+ between

the Bogoliubov modes θ j and the cavity mode a j , which is
harmful for the cooling effect. Therefore, entanglement and
steering are nonmonotonic functions of G+/G− and take a
maximum for a specific G+/G−. From the subplots of Fig. 2,
it can be found that the optimal values of both steering
and entanglement (especially for the b1 → b2 steering GA)
gradually decrease with the increase of the damping rate
γm2. Peculiarly, when the damping rate γm2 is large enough
[e.g., γm2/γm1 = 10 in Fig. 2(c)], the b1 → b2 steering GA

disappears completely, while there is still b2 → b1 steering
GB. As the damping rate γm2 gets larger [e.g., γm2/γm1 = 16
in Fig. 2(d)], the b2 → b1 steering GB also vanishes while the
optimal entanglement obtained is still large enough, which
proves again that the steering is a nonclassical correlation
stronger than entanglement. The above observed phenomena

can be explained as follows. When the mechanical decay
rate γm2 is larger, there is a stronger interaction between the
mechanical mode b2 and its thermal bath, which raises the
final effective temperature of Bogoliubov modes (especially
the mechanical mode b2). Since both quantum steering and
entanglement are sensitive to the environmental temperature,
their optimal values gradually decrease with the increase of
the damping rate γm2. Specifically, due to the asymmetry
of the system, the b1 → b2 steering GA drops faster than
the b2 → b1 steering GB. At first sight, this result seems
to be inconsistent with earlier studies [14,24,48,49], but it
actually is not. The result comes from the fact that the raised
effective temperature of the mechanical mode b2 will enlarge
its corresponding quantum fluctuations. That is to say, the
steerability between two mechanical modes is simultaneously
affected, both by the mode damping (loss) and thermal bath
(noises), and the fact that the mechanical mode with larger
damping rate is more difficult to steer by the other one
when the mean thermal occupancy of the mechanical baths
are not negligible. Therefore, when certain conditions are
met, there exist entangled states which are b2 → b1 one-way
steerable. The states that have b2 → b1 one-way steering are
clearly shown in Figs. 2(b) and 2(c). The b2 → b1 one-way
steering implies that Bob can convince Alice that their shared
state is entangled, while the converse is not true. The most
obvious application is that it provides security in one-sided
device-independent quantum key distribution (QKD), where
the measurement apparatus of one party only is untrusted.

Figure 3 displays the peak values of stationary entangle-
ment and steering of the two mechanical modes for each time
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FIG. 3. Maximum mechanical-mechanical entanglement and steering for each time period in the asymptotic regime as functions of the
ratio γm2/γm1 of the damping rate for different effective coupling ratios G+/G−: (a) G+/G− = 0.1, (b) G+/G− = 0.4, (c) G+/G− = 0.5, and
(d) G+/G− = 0.9. The other parameters are κ/ωm = 0.1, γm1/ωm = 1 × 10−4, �/ωm = 4, J/ωm = 3, g/ωm = 1 × 10−5, G−/ωm = 0.03, and
nb = 5.
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period in the long-time limit as functions of the ratio γm2/γm1,
where different ratios G+/G− are used in different subplots.
The value γm2/γm1 determines the asymmetry of the system.
From Fig. 3 it can be found that the entanglement and the
steering all drop rapidly with the increase of γm2/γm1, and
the b1 → b2 steering GA usually vanishes earlier than the
b2 → b1 steering GB. Therefore there are states that only have
one-way quantum steering.

For the sake of gaining a large one-way steering while
retaining the relatively high amount of entanglement, we
must select proper ratio of effective coupling G+/G− and the
damping rate ratio γm2/γm1. From Eqs. (9), (12), and (18),
G+/G− is proportional to the ratio of the driving amplitudes
E2/E1 when other system parameters remain fixed. Thus, one-
way steering can be observed by controlling the amplitudes
of external lasers and choosing an appropriate ratio of two
mechanical damping rates.

Finally, it should be noted that the goal can in principle be
achieved by using two two-tone driving lasers with a two-step
process [30]. However, in our scheme we simultaneously
make two modes in the squeezed state with two four-tone
lasers by only one step. As a consequence, the effect of
the mechanical damping in our scheme may be smaller. The
four-tone driving lasers have been used in the theoretical work
of Ref. [32] and the related experimental work of Ref. [29]. In
Ref. [29], two driving tones are used to prepare the two-mode
squeezed state, while two other driving tones are used to
measure the state prepared. Hence, the four-tone lasers can
be implemented in principle under the current experimental
conditions.

IV. CONCLUSIONS

In summary, we have investigated an optomechanical sys-
tem consisting of two cavity modes and two mechanical
modes. The two cavity modes are pumped by two four-tone
driving lasers. The numerical simulation results reveal that
both steering and entanglement of the two mechanical modes
can be greatly enhanced by controlling the amplitudes and
frequencies of the pumping lasers. Specifically, when we
increase the damping rate γm2, it is found that the b1 → b2

steering vanishes earlier than the b2 → b1 steering, which
means that the two mechanical modes can be in a state that has
only one-way quantum steering. One-way quantum steering
may have potential applications in the quantum information
protocols, such as device-independent quantum key distribu-
tion. Our one-way quantum steering generation method is a
reservoir-engineered method that does not depend on the ini-
tial states of the system, which may reduce the experimental
realization requirement.
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