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Abstract

We consider two-component Bose—Einstein condensates subject to Weyl spin—orbit coupling. We
obtain mean-field ground state phase diagram by variational method. In the regime where interspecies
coupling is larger than intraspecies coupling, the system is found to be fully polarized and condensed
ata finite momentum lying along the quantization axis. We characterize this phase by studying the
excitation spectrum, the sound velocity, the quantum depletion of condensates, the shift of ground
state energy, and the static structure factor. We find that spin—orbit coupling and interspecies coupling
generally leads to competing effects.

1. Introduction

The creation of synthetic gauge fields in ultracold atomic gases provides fascinating opportunities for exploring
quantum many-body physics [1]. Of particular interest is the realization of non-Abelian spin—orbit coupling
(SOC) [2—4]. Spin—orbit coupling is crucial for realizing intriguing phenomena such as the quantum spin Hall
effect [5], new materials classes such as topological insulators and superconductors [6—8]. In bosonic systems,
the presence of SOC may lead to novel ground states that have no known analogs in conventional solid-state
materials [9-11]. In cold atomic gases, spin—orbit coupling can be implemented by Raman dressing of atomic
hyperfine states [12, 13]. The tunability of the Raman coupling parameters promises a highly flexible
experimental platform to explore interesting physics resulting from spin—orbit coupling [ 14]. Recently, two-
dimensional SOC has been experimentally realized in cold atomic gases [15, 16].

In anticipation of immediate experimental relevance, intense theoretical attention has been paid to the
physics of ultracold atomic gases in the presence of SOC [3, 4]. In the absence of interparticle interactions, the
low-lying density of states is two-dimensional for Rashba-type SOC [9]. In particular, the single-particle energy
minimum featured a Rashba-ring, which has important consequences on the ground state and finite-
temperature properties of SOC Bose gases [17-26], as the role of quantum fluctuations gets enhanced due to
huge degeneracies at the lowest-lying states. The three-dimensional analog of Rashba-type SOC is interesting
because it is expected to stabilize along-sought skyrmion mode in the ground state of trapped Bose—Einstein
condensates (BECS) [19, 27, 28]. This Weyl-type SOC can be implemented following the proposals [29-31] by
using powerful quantum technology. Although there is currently no evidence for Weyl fermions to exist as
fundamental particles in our universe, Weyl-like quasiparticles have been detected recently in condensed-matter
systems [32, 33]. In light of these discoveries, the study of Weyl SOC in ultracold atom systems becomes
particularly relevant, since the ability of manipulate the Weyl-SOC strength creates interesting opportunities for
the exploration of effects not predicted in the realm of particle physics. In addition, the study of the effects of
SOC may reveal some interesting physics unexplored in conventional binary Bose condensates [34, 35]. In this
work, we shall examine the physics of two-component Bose gases subject to Weyl-type SOC. Firstly, we will
introduce the model and determine the mean-field ground state by variation approach. Secondly, we will set out
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to study a particular realization of ground state where quantum fluctuation plays an essential role. Specially, we
will investigate the interplay of spin—orbit coupling and interspecies interaction upon the ground state
properties of the system. Finally, we will come to a summary.

2. Model and formalism

We consider a 3D homogeneous interacting two-component Bose gas subject to Weyl-type spin—orbit coupling,
described by the Hamiltonian H = H, + Hj, with

2\72
H, = fd3r\If+(r)[— ﬁZZ + Ao - f)]\lf(r), (1a)
H; = fd3r|:g21’l(,(r)2 + Zg“nﬂ’ll]. (1b)

Here U(r) = (¢4, )T isa two-component spinor field, & = X0, + yo, + Zo,, p is the momentum operator,
1, = 1 1), is the density for component o € {T, |}, \is the strength of the spin—orbit coupling, and the
strength for the intraspecies interaction and interspecies interaction is gand g; |, respectively. For brevity, we set
7= 2m = 1fromnow on.

Diagonalization of H, yields the two-branch single-particle energy spectrum E.(p) = p? + Ap, and the
corresponding eigenfunctions are given by

@)

(I)i(P) = (Sin[(ﬂ- - 29P + 77)/4] e‘i%) elpr

cos[(m — 20, £ m) /4] )V’

where V'is the volume of the system. The lowest-energy state for a given propagating direction parameterized by
0p and ¢, is from the *-’ branch and occurs at momentum p = 5 (sinfycosp,,, sinfpsing,,, cosbp).

To determine the ground state of an interacting system, as routinely done in the literature [10, 23, 36—38], we
assume that the system has condensed into a coherent superposition of two plane-wave states with opposite
momenta with magnitude p = A/2. Thus the condensate wave function adopts the form
by = C, D _(p) + C_P_(—p), where C; and C_ are two complex numbers to be determined and subject to
normalization condition |C, [> + |C_|* = n,. Without loss of generality, the normalization condition suggests
the parametrization |C, > = ng cos’(a/2) and |C_|* = ny sin?(a/2), with a € [0, 7]. Upon substitution into
Eg = (®g|H|®Dy), the variational ground state energy per particle is evaluated as

Eg X &, — &no
= = 4o+ =" f(6,, ), 3
noV g 8 2 J O @) ®)

where f (0,, a) = sin*6, + sin® a — 3sin* @psin* ov/2. Minimization of the ground state energy with respect to
0p and o, one obtains the ground state phase diagram, summarized in figure 1. When g, | — g > 0, the system is
found to be in the phase of PW-Polar, which is a fully polarized phase with condensation momentum lying along
the quantization axis. When g, | — g < 0,at mean-field level, there are two degenerate phases: one is
unpolarized PW-Axial phase, which is condensed at one plane-wave with momentum lying in the x—y plane; the
other one is the SP-Polar phase, which is striped phase mixing of two opposite momentum along the z-axis.
There exists a critical point when g, | — g = 0. In this case the system enjoys a SU(2) pseudo-spin rotation
symmetry. To determine which phase the system prefers requires calculation going beyond mean field, and in
principle it is believed to lead to a unique ground state via the mechanism of ‘order from disorder’ [18, 39].
Within the imaginary-time field integral, the partition function of the system may be cast as [40]

z fD [, leS V5%, with the action § = j;d dr [drY, 50, — Wy + H@WE, 1,)], where 3 = 1/T is
the inverse temperature and . is the chemical potential introduced to fix the total particle number. Here, for
simplicity, we restrict ourself to studying the PW-Polar phase. Without loss of generality, we further assume that
the condensation occurs at momentum £ = (0, 0, — A/2), then the ground state wave function is determined
as ®y = /11 (1, 0)Te~"#/2 Ttisa fully polarized phase with condensation momentum aligning antiparallel with
the quantization axis. We split the Bose field into the mean-field part ¢, and the fluctuating part ¢, as

Ygo = Pop O + @, After substitution, the action can be formally writtenas § = S + S¢, where

So = BV [(_/\TZ — wny + gnoz] is the mean-field contribution and S¢ denotes a contribution from the
fluctuating fields. The chemical potential may be determined via saddle point condition 0S, /91y = 0, yielding
W= —%2 + 2gn,. Atthis point, the action is exact. However, it contains terms of cubic and quartic orders in
fluctuating fields. To proceed, we resort to the celebrated Bogoliubov approximation, where only terms of

zeroth and quadratic orders in the fluctuating fields are retained. By defining a four-dimensional column vector
P = (Pryqp Priqp ¢§7 qr (;5:';7 q |)» we can bring the fluctuating part of the action into the compact form

2
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Figure 1. Mean-field ground state phase diagram. Panel (a): for g;) — ¢ > 0, the ground state isin PW-Polar phase, where it isa plane
wave with the condensation momentum being parallel to the z-axis. For g;| — g < 0, the system may be in the phase of either PW-
Axial or SP-Polar. Here PW-Axial phase stands for one plane wave with the condensation momentum lying in the x—y plane, and SP-
Polar phase stands for the condensation at two opposite momenta along the z-axis. Panel (b): schematic representation of the PW-
Polar and PW-Axial phases. For one plane-wave condensation at either the north pole or the south pole is called the PW-Polar phase,
itis a fully polarized phase as only one component is allowed. For one plane-wave condensation in the x—y plane is called PW-Axial, it
is an unpolarized phase.

Se & Xgim %@; G q, im) Py — gzq,a €qo-where w, = 27mn/ (3 is the bosonic Matsubar frequencies, and the

inverse Green’s function G~!(q, iw;,) is defined as

—iw, + €q1 Rq 2gn,, 0
Gl Ry —iw, + €q) 0 0 @
2gn, 0 iw, + €_q7 R’fq ’
0 0 R_q iw, + €_q|

where g1 = q* + 2gny, €q) = 9> — 2Aq, + X + 2(g;; — g)no,and Rq = A(q, — iq,). Throughout our
calculation, we will choose gn, as a basic energy scale and /g7, as the corresponding momentum scale. To
characterize the strength of interspecies coupling, we define a dimensionless parameter n = g, /g.

3. Calculation and results

The excitation spectrum of the system can be found by examining the poles of the Green’s function G(q, iw;,). To
achieve this , one proceeds by evaluating the determinant of G~1(q, iw;,),

det[G™1] = (iw, — wip) [(iwn + 2Aq,)* — wio] — 2XqF,

Xq?
F = iw, (iw, + 2)\q,) + (q* + 2gny)wy — qu , 5)

where wig = q,/q* + 4gn, and wyy = ¥ + q* + 2 (&, — &noand g, = qx2 + q;. By solving the secular
equation DetG~'(q, wgs) = 0, one finds two branches of excitation spectrum wq ¢ . As seen from equation (5),
the excitation spectrum enjoys the azimuthal symmetry. Therefore we only plot the spectrum along two typical
directions in figure 2. Along the z-axis, the lower branch show the features of roton-maxon structure, indication
of the tendency toward crystallization [36]. Such roton-maxon spectrum has been detected in recent Bragg
spectroscopy experiments [41-43], and the spectrum is asymmetrical with respect to reversing the direction. In
the x—y plane, the two branches are well separated as the upper branch is gapped while the lower branch becomes
gapless as it approaches the origin q = (0, 0, 0).

Aside from the roton mode discussed above, the lower branch of the excitation spectrum also contains
important information about the photon mode. Along z direction where g, = 0, itis straight forward to
analytically derive two branches of solutions from equation (5): w_ = wjpand wy = —2Ag, + wy. Thesound
velocity along this directionis v; = 2. /g . In the x—y plane, low-energy expansion around the gapless point

(0, 0, O)yields w_ ~ vigq, + (’)(qf) with in-plane isotropic sound velocity given by

vi = J2gn, \/ 2(n — 1/[2(n — 1) + X*/gn,]. Numerically we compute the sound velocity via

%(q) = lim,_ow_(q) /q. We find that the sound velocity varies with the polar angle 6, as shown in figure 3. The
sound velocity enjoys a symmetry of % (6;) = 1 (7 — 6), with the maximum sound velocity achieved along z-
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Figure 2. Two branches of excitation spectrum wy in the momentum space: (a) along the z-axis, and (b) in the x—y plane. Here we set
interspecies coupling 77 = 2.0 and spin—orbit coupling A = _/gn, .
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Figure 3. Polar angle 6 dependence of the sound velocity v: (a) for different spin—orbit coupling strength Aat 7 = 2.0; (b) for
different interspecies couplingnat A = /gn.

axis and the minimum one in the x—y plane. Away from the critical point where 1 = 1, the spin—orbit coupling
suppresses the sound velocity along any polar direction except for ; = 0 and 7, as indicated in figure 3(a).
Interestingly, as seen in figure 3(b), suppression of sound velocity due to spin—orbit coupling could be mitigated
by increasing the interspecies coupling, an indication of competing effects of spin—orbit coupling and
interspecies coupling.

Being an intrinsic property of a BEC, the quantum depletion of the condensates provides vital information
concerning the robustness of the superfluid state. The number density of exited particles can be evaluated by
employing the quasi-particle’s Green’s function

nex = »_ [G11(Q, iwn) + G (q, iwy)]. (6)

Qiwy,

We show the density of the excited particles out of the condensates due to quantum fluctuation in figure 4. Ata
fixed interspecies coupling 7, the quantum depletion is monotonically enhanced by spin—orbit coupling, and it
reduces to the case of spinless Bose gases with 7., = (gno)3/ 2 / (372) in the absence of spin—orbit coupling [44], as
seen in figure 4(a). At a fixed spin—orbit coupling strength, the interspecies coupling actually suppresses
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Figure 4. Density of the excited particles due to quantum fluctuation #,, (in units of (gnO)S/ 2): (a) as a function of spin—orbit coupling
strength A for three typical interspecies coupling strength = 1.0, n = 1.5 and 1 = 2.0; (b) as a function of interspecies coupling
strength 1) for three typical spin—orbit coupling strength A = 0.5 /gn;, A = 1.0 Jgn,and A = 1.5 [gn;.
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Figure 5. The fluctuation shift of ground state energy AEg = Eg — Eyp (measured in units of V' (gno)s/ 2): (a) as a function of spin—
orbit coupling strength A for three typical interspecies coupling strength = 1.0, n = 1.5and 1 = 2.0; (b) asa function of
interspecies coupling strength 7 for three typical spin—orbit coupling strength A = 0.5 /gn;, A = 1.0 /gn and A = 1.5 Jgn;.

quantum depletion, signifying the competing effects of spin—orbit coupling and interspecies coupling upon
quantum depletion. When the spin—orbit coupling is small, the effect of interspecies coupling decreases as well,
asindicated in figure 4(b). This is quite remarkable, because there is only one species of condensation. In the
absence of spin—orbit coupling, we do not expect that the the interspecies coupling plays any role in quantum
depletion. We attribute this behavior to stemming from quantum fluctuation enhanced by spin—orbit coupling.
The thermodynamic potential of this system is given by Q = —In Z/0 = Qq + ), where the mean-field
partis Qy = — Vgno2 and the fluctuating partis Q¢ = ZI?Trlng*1 — %Z qo €qo- The thermodynamic potential €2
possesses an ultraviolet divergence, an artifact of zero range interaction, which can be removed either by
replacing the bare interaction g with a T matrix [45] or by subtracting counter-terms [46]. At zero temperature,

the ground-state energy becomes Eg = €2 + uN, renormalized as

wqs — (&q1 + €q1)/2 n g’ng
2 2q°

Ec=Ewr+ Y.
qs==+

@)

Here Eyp = V (gno2 — ’\72) is the mean-field energy. We show the shift of ground state energy due to quantum
fluctuation AEg = Eg — Eyrinfigure 5. As seen in panel (a), at a fixed interspecies coupling 7, the shift of the
ground state energy AEg decreases monotonically with the strength of spin—orbit coupling A. In the absence of
the spin—orbit coupling and interspecies interaction, we have checked that the ground state energy Eg recovers
the well-known Lee—Huang—Yang result [47] for spinless and weakly-interacting Bose gases with
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Figure 6. Distribution of the static structure factor S (q) in the momentum space. Upper panel: as a function of in-plane momentum
q, for (a) different spin—orbit coupling strength A and (b) different interspecies strength 7. Lower panel: as a function of polar angle 6,
for (¢) different spin—orbit coupling strength A and (d) different interspecies coupling strength 1.

Eg/V = %(1 + %) Jna®, where ais the scattering length. While, for a finite spin—orbit coupling, the shift
of the ground state energy increases with interspecies coupling 7, evidently shown in panel (b).

The static structure factor S (q) probes density fluctuations of a system. It provides information on both the
spectrum of collective excitations, which could be investigated at low momentum transfer, and the momentum
distribution, which characterizes the behavior of the system at high momentum transfer, where the response is

dominated by single-particle effects. At the Bogoliubov level, it can be evaluated as

NS(q) = (6, p,)
= No Z(Gu + G33 + Gi3 + Ga)

N Y —2q%A(q, iw,)
* S det[G (g, iwn)]

where A(q, iwm,) = (iw, + 2Aq,)* — w3y + Nwy sin? 6. Itis quite clear that the static structure factor
possesses the cylindrical symmetry S(q) = S(g, ;). At g, = 0, the static structure factor adopts a close form as
follows

®

)

2
S, =0,q,) = No 47 oth —ﬁwlzo(q).

w10

In this case, it recovers the Feynman relation [48, 49], which connects the static structure factor to the excitations
spectrum of a Bose system with time-reversal symmetry. We show the behavior of the static structure in figure 6.
In the upper panel, we show the in-plane static structure factor S(g, 6 = 7/2) in terms of in-plane momentum
q, - Tt decreases as the spin—orbit coupling strength is increased, but increases as the interspecies coupling is
increased. Such reversing trend signifies that spin—orbit coupling and interspecies coupling act with reversal role
in the density response of the system. In the lower panel, we show angular dependence of the static structure
factoratq = _/gn, . Itisinteresting to notice that S (q) is also symmetrical with reflection about the x-y plane,
namely S(g, 6;) = S(g, ™ — 0). The static structure factor develops its minimum along 6 = /2. The spin—
orbit coupling suppresses the density response greatly in the x—y plane, as seen in panel (c). In turn, the
interspecies coupling enhances the density response greatly along the direction of f; = 7 /2.

4. Summary and conclusions

To sum up, we have studied two-component Bose gases in the presence of Weyl-type SOC. We obtain the phase
diagram via a variational approach. We find competing effects between spin—orbit coupling and interspecies
coupling strength upon various properties of the PW-Polar phase. There is one crucial difference between them:
spin—orbit coupling allows the process of pseudospin flipping process, while interspecies interaction does not
permit that. This has far-reaching consequence in the quantum depletion of the condensates. In addition to
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cylindrical symmetry endorsed by the ground state where the condensation momentum lying along the
quantization axis, the sound velocity and the static structure factor also enjoy a reflection symmetry with respect
to x—y plane. We hope that our work will contribute to a deeper understanding of SOC BECs and the role of
quantum fluctuations.
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